update readme
Browse files
README.md
CHANGED
|
@@ -4,10 +4,9 @@ language:
|
|
| 4 |
- en
|
| 5 |
---
|
| 6 |
|
| 7 |
-
# RedPajama-
|
| 8 |
|
| 9 |
-
RedPajama-
|
| 10 |
-
It is further fine-tuned on GPT-JT's datasets enhance zero/few-shot in-context learning.
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
- **Developed by**: Together Computer.
|
|
@@ -18,52 +17,115 @@ It is further fine-tuned on GPT-JT's datasets enhance zero/few-shot in-context l
|
|
| 18 |
|
| 19 |
# Quick Start
|
| 20 |
|
|
|
|
|
|
|
| 21 |
## GPU Inference
|
| 22 |
|
| 23 |
-
This requires a GPU with
|
|
|
|
| 24 |
```python
|
|
|
|
|
|
|
| 25 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# init
|
| 27 |
-
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-
|
| 28 |
-
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-
|
| 29 |
model = model.to('cuda:0')
|
| 30 |
# infer
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
print(output_str)
|
|
|
|
|
|
|
|
|
|
| 35 |
```
|
| 36 |
|
| 37 |
## GPU Inference in Int8
|
| 38 |
|
| 39 |
-
This requires a GPU with
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
```python
|
|
|
|
|
|
|
| 42 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# init
|
| 44 |
-
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-
|
| 45 |
-
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-
|
|
|
|
| 46 |
# infer
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
print(output_str)
|
|
|
|
|
|
|
|
|
|
| 51 |
```
|
| 52 |
|
| 53 |
## CPU Inference
|
| 54 |
|
| 55 |
```python
|
|
|
|
|
|
|
| 56 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
# init
|
| 58 |
-
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-
|
| 59 |
-
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-
|
| 60 |
# infer
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
print(output_str)
|
|
|
|
|
|
|
|
|
|
| 65 |
```
|
| 66 |
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# Uses
|
| 69 |
|
|
@@ -85,7 +147,7 @@ It is the responsibility of the end user to ensure that the model is used in a r
|
|
| 85 |
|
| 86 |
#### Out-of-Scope Use
|
| 87 |
|
| 88 |
-
RedPajama-
|
| 89 |
For example, it may not be suitable for use in safety-critical applications or for making decisions that have a significant impact on individuals or society.
|
| 90 |
It is important to consider the limitations of the model and to only use it for its intended purpose.
|
| 91 |
|
|
@@ -108,7 +170,7 @@ Using the model to generate content that is cruel to individuals is a misuse of
|
|
| 108 |
|
| 109 |
## Limitations
|
| 110 |
|
| 111 |
-
RedPajama-
|
| 112 |
For example, the model may not always provide accurate or relevant answers, particularly for questions that are complex, ambiguous, or outside of its training data.
|
| 113 |
We therefore welcome contributions from individuals and organizations, and encourage collaboration towards creating a more robust and inclusive chatbot.
|
| 114 |
|
|
@@ -123,7 +185,7 @@ Please refer to [togethercomputer/RedPajama-Data-1T](https://huggingface.co/data
|
|
| 123 |
- **Hardware:** 8 A100
|
| 124 |
- **Optimizer:** Adam
|
| 125 |
- **Gradient Accumulations**: 1
|
| 126 |
-
- **Num of Tokens:**
|
| 127 |
- **Learning rate:** 1e-5
|
| 128 |
|
| 129 |
## Community
|
|
|
|
| 4 |
- en
|
| 5 |
---
|
| 6 |
|
| 7 |
+
# RedPajama-Instruct-INCITE-6.9B
|
| 8 |
|
| 9 |
+
RedPajama-Instruct-INCITE-6.9B-v1, is a large transformer-based language model developed by Together Computer and trained on the RedPajama-Data-1T dataset.
|
|
|
|
| 10 |
|
| 11 |
## Model Details
|
| 12 |
- **Developed by**: Together Computer.
|
|
|
|
| 17 |
|
| 18 |
# Quick Start
|
| 19 |
|
| 20 |
+
Please note that the model requires `transformers` version >= 4.25.1.
|
| 21 |
+
|
| 22 |
## GPU Inference
|
| 23 |
|
| 24 |
+
This requires a GPU with 8GB memory.
|
| 25 |
+
|
| 26 |
```python
|
| 27 |
+
import torch
|
| 28 |
+
import transformers
|
| 29 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 30 |
+
|
| 31 |
+
MIN_TRANSFORMERS_VERSION = '4.25.1'
|
| 32 |
+
|
| 33 |
+
# check transformers version
|
| 34 |
+
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
|
| 35 |
+
|
| 36 |
# init
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-6.9B-v1")
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-6.9B-v1", torch_dtype=torch.float16)
|
| 39 |
model = model.to('cuda:0')
|
| 40 |
# infer
|
| 41 |
+
prompt = "Q: The capital of France is?\nA:"
|
| 42 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
| 43 |
+
input_length = inputs.input_ids.shape[1]
|
| 44 |
+
outputs = model.generate(
|
| 45 |
+
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
|
| 46 |
+
)
|
| 47 |
+
token = outputs.sequences[0, input_length:]
|
| 48 |
+
output_str = tokenizer.decode(token)
|
| 49 |
print(output_str)
|
| 50 |
+
"""
|
| 51 |
+
Paris
|
| 52 |
+
"""
|
| 53 |
```
|
| 54 |
|
| 55 |
## GPU Inference in Int8
|
| 56 |
|
| 57 |
+
This requires a GPU with 6GB memory.
|
| 58 |
+
|
| 59 |
+
To run inference with int8, please ensure you have installed accelerate and bitandbytes. You can install them with the following command:
|
| 60 |
+
|
| 61 |
+
```bash
|
| 62 |
+
pip install accelerate
|
| 63 |
+
pip install bitsandbytes
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
Then you can run inference with int8 as follows:
|
| 67 |
|
| 68 |
```python
|
| 69 |
+
import torch
|
| 70 |
+
import transformers
|
| 71 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 72 |
+
|
| 73 |
+
MIN_TRANSFORMERS_VERSION = '4.25.1'
|
| 74 |
+
|
| 75 |
+
# check transformers version
|
| 76 |
+
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
|
| 77 |
+
|
| 78 |
# init
|
| 79 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-6.9B-v1")
|
| 80 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-6.9B-v1", device_map='auto', torch_dtype=torch.float16, load_in_8bit=True)
|
| 81 |
+
|
| 82 |
# infer
|
| 83 |
+
prompt = "Q: The capital of France is?\nA:"
|
| 84 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
| 85 |
+
input_length = inputs.input_ids.shape[1]
|
| 86 |
+
outputs = model.generate(
|
| 87 |
+
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
|
| 88 |
+
)
|
| 89 |
+
token = outputs.sequences[0, input_length:]
|
| 90 |
+
output_str = tokenizer.decode(token)
|
| 91 |
print(output_str)
|
| 92 |
+
"""
|
| 93 |
+
Paris
|
| 94 |
+
"""
|
| 95 |
```
|
| 96 |
|
| 97 |
## CPU Inference
|
| 98 |
|
| 99 |
```python
|
| 100 |
+
import torch
|
| 101 |
+
import transformers
|
| 102 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 103 |
+
|
| 104 |
+
MIN_TRANSFORMERS_VERSION = '4.25.1'
|
| 105 |
+
|
| 106 |
+
# check transformers version
|
| 107 |
+
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
|
| 108 |
+
|
| 109 |
# init
|
| 110 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-6.9B-v1")
|
| 111 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-6.9B-v1", torch_dtype=torch.bfloat16)
|
| 112 |
# infer
|
| 113 |
+
prompt = "Q: The capital of France is?\nA:"
|
| 114 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
| 115 |
+
input_length = inputs.input_ids.shape[1]
|
| 116 |
+
outputs = model.generate(
|
| 117 |
+
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
|
| 118 |
+
)
|
| 119 |
+
token = outputs.sequences[0, input_length:]
|
| 120 |
+
output_str = tokenizer.decode(token)
|
| 121 |
print(output_str)
|
| 122 |
+
"""
|
| 123 |
+
Paris
|
| 124 |
+
"""
|
| 125 |
```
|
| 126 |
|
| 127 |
+
Please note that since `LayerNormKernelImpl` is not implemented in fp16 for CPU, we use `bfloat16` for CPU inference.
|
| 128 |
+
|
| 129 |
|
| 130 |
# Uses
|
| 131 |
|
|
|
|
| 147 |
|
| 148 |
#### Out-of-Scope Use
|
| 149 |
|
| 150 |
+
RedPajama-Instruct-INCITE-6.9B is a language model and may not perform well for other use cases outside of its intended scope.
|
| 151 |
For example, it may not be suitable for use in safety-critical applications or for making decisions that have a significant impact on individuals or society.
|
| 152 |
It is important to consider the limitations of the model and to only use it for its intended purpose.
|
| 153 |
|
|
|
|
| 170 |
|
| 171 |
## Limitations
|
| 172 |
|
| 173 |
+
RedPajama-Instruct-INCITE-6.9B, like other language models, has limitations that should be taken into consideration.
|
| 174 |
For example, the model may not always provide accurate or relevant answers, particularly for questions that are complex, ambiguous, or outside of its training data.
|
| 175 |
We therefore welcome contributions from individuals and organizations, and encourage collaboration towards creating a more robust and inclusive chatbot.
|
| 176 |
|
|
|
|
| 185 |
- **Hardware:** 8 A100
|
| 186 |
- **Optimizer:** Adam
|
| 187 |
- **Gradient Accumulations**: 1
|
| 188 |
+
- **Num of Tokens:** 131M tokens
|
| 189 |
- **Learning rate:** 1e-5
|
| 190 |
|
| 191 |
## Community
|