Update modeling_tinyllava_phi.py
Browse files- modeling_tinyllava_phi.py +473 -473
modeling_tinyllava_phi.py
CHANGED
|
@@ -1,474 +1,474 @@
|
|
| 1 |
-
from dataclasses import dataclass
|
| 2 |
-
from typing import List, Optional, Tuple, Union
|
| 3 |
-
import ast
|
| 4 |
-
import re
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
-
import torch.utils.checkpoint
|
| 8 |
-
from torch import nn, Tensor
|
| 9 |
-
from torch.nn import functional as F
|
| 10 |
-
|
| 11 |
-
from transformers import PreTrainedModel
|
| 12 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 13 |
-
from transformers.generation.utils import GenerateOutput
|
| 14 |
-
from transformers import CLIPVisionModel, CLIPImageProcessor, SiglipVisionModel, SiglipImageProcessor
|
| 15 |
-
|
| 16 |
-
from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 17 |
-
|
| 18 |
-
from transformers import AutoConfig, AutoModelForCausalLM, PhiForCausalLM
|
| 19 |
-
from data_preprocess import *
|
| 20 |
-
|
| 21 |
-
# from tinyllava.utils.data_utils import get_value_from_kwargs
|
| 22 |
-
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
| 23 |
-
WORKER_HEART_BEAT_INTERVAL = 15
|
| 24 |
-
|
| 25 |
-
LOGDIR = "."
|
| 26 |
-
#
|
| 27 |
-
# For licensing see accompanying LICENSE file.
|
| 28 |
-
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
| 29 |
-
#
|
| 30 |
-
from transformers.utils import logging
|
| 31 |
-
|
| 32 |
-
logger = logging.get_logger(__name__)
|
| 33 |
-
|
| 34 |
-
# this import has to be relative, otherwise, when setting trust_remote_code=True
|
| 35 |
-
# huggingface transformers won't be able to load the module correctly
|
| 36 |
-
from numbers import Number
|
| 37 |
-
from typing import List, Optional, Union
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
ACT_TYPE = {
|
| 43 |
-
'relu': nn.ReLU,
|
| 44 |
-
'gelu': nn.GELU
|
| 45 |
-
}
|
| 46 |
-
|
| 47 |
-
class Connector(nn.Module):
|
| 48 |
-
def __init__(self, config=None):
|
| 49 |
-
super().__init__()
|
| 50 |
-
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', config.connector_type)
|
| 51 |
-
act_type = config.connector_type.split('_')[-1]
|
| 52 |
-
mlp_depth = int(mlp_gelu_match.group(1))
|
| 53 |
-
modules = [nn.Linear(config.vision_hidden_size, config.hidden_size)]
|
| 54 |
-
for _ in range(1, mlp_depth):
|
| 55 |
-
modules.append(ACT_TYPE[act_type]())
|
| 56 |
-
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
| 57 |
-
|
| 58 |
-
self._connector = nn.Sequential(*modules)
|
| 59 |
-
|
| 60 |
-
def forward(self, x):
|
| 61 |
-
return self._connector(x)
|
| 62 |
-
|
| 63 |
-
class VisionTower(nn.Module):
|
| 64 |
-
def __init__(self, cfg, model_name_or_path = 'clip'):
|
| 65 |
-
super().__init__()
|
| 66 |
-
if 'clip' in model_name_or_path:
|
| 67 |
-
self._vision_tower = CLIPVisionModel(cfg)
|
| 68 |
-
self._image_processor = CLIPImageProcessor.from_pretrained(cfg.model_name_or_path)
|
| 69 |
-
else:
|
| 70 |
-
self._vision_tower = SiglipVisionModel(cfg)
|
| 71 |
-
self._image_processor = SiglipImageProcessor.from_pretrained(cfg.model_name_or_path)
|
| 72 |
-
|
| 73 |
-
self.config = cfg
|
| 74 |
-
|
| 75 |
-
def forward(self, x, **kwargs):
|
| 76 |
-
image_features = self._vision_tower(x, output_hidden_states=True)
|
| 77 |
-
image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)]
|
| 78 |
-
|
| 79 |
-
if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch':
|
| 80 |
-
image_features = image_features[:, 1:]
|
| 81 |
-
elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch':
|
| 82 |
-
image_features = image_features
|
| 83 |
-
else:
|
| 84 |
-
raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}")
|
| 85 |
-
|
| 86 |
-
return image_features
|
| 87 |
-
|
| 88 |
-
@property
|
| 89 |
-
def vision_tower(self):
|
| 90 |
-
return self._vision_tower
|
| 91 |
-
|
| 92 |
-
@vision_tower.setter
|
| 93 |
-
def vision_tower(self, vision_tower):
|
| 94 |
-
self._vision_tower = vision_tower
|
| 95 |
-
|
| 96 |
-
def get_value_from_kwargs(kwargs, name):
|
| 97 |
-
if name in kwargs:
|
| 98 |
-
return kwargs.pop(name)
|
| 99 |
-
else:
|
| 100 |
-
return None
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
class TinyLlavaPreTrainedModel(PreTrainedModel):
|
| 104 |
-
config_class = TinyLlavaConfig
|
| 105 |
-
base_model_prefix = "model"
|
| 106 |
-
supports_gradient_checkpointing = True
|
| 107 |
-
_no_split_modules = ["LlavaVisionAttention"]
|
| 108 |
-
_skip_keys_device_placement = "past_key_values"
|
| 109 |
-
_supports_flash_attn_2 = True
|
| 110 |
-
|
| 111 |
-
def _init_weights(self, module):
|
| 112 |
-
std = (
|
| 113 |
-
self.config.initializer_range
|
| 114 |
-
if hasattr(self.config, "initializer_range")
|
| 115 |
-
else self.config.text_config.initializer_range
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
if hasattr(module, "class_embedding"):
|
| 119 |
-
module.class_embedding.data.normal_(mean=0.0, std=std)
|
| 120 |
-
|
| 121 |
-
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 122 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
| 123 |
-
if module.bias is not None:
|
| 124 |
-
module.bias.data.zero_()
|
| 125 |
-
elif isinstance(module, nn.Embedding):
|
| 126 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
| 127 |
-
if module.padding_idx is not None:
|
| 128 |
-
module.weight.data[module.padding_idx].zero_()
|
| 129 |
-
|
| 130 |
-
@property
|
| 131 |
-
def _supports_sdpa(self):
|
| 132 |
-
return self.language_model._supports_sdpa
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel):
|
| 136 |
-
def __init__(self, config: TinyLlavaConfig):
|
| 137 |
-
|
| 138 |
-
super().__init__(config)
|
| 139 |
-
|
| 140 |
-
self.language_model = PhiForCausalLM(config.text_config)
|
| 141 |
-
self.vision_tower = VisionTower(config.vision_config, config.vision_model_name_or_path)
|
| 142 |
-
self.connector = Connector(config)
|
| 143 |
-
self.post_init()
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
def get_input_embeddings(self):
|
| 147 |
-
return self.language_model.get_input_embeddings()
|
| 148 |
-
|
| 149 |
-
def set_input_embeddings(self, value):
|
| 150 |
-
self.language_model.set_input_embeddings(value)
|
| 151 |
-
|
| 152 |
-
def get_output_embeddings(self):
|
| 153 |
-
return self.language_model.get_output_embeddings()
|
| 154 |
-
|
| 155 |
-
def set_output_embeddings(self, new_embeddings):
|
| 156 |
-
self.language_model.set_output_embeddings(new_embeddings)
|
| 157 |
-
|
| 158 |
-
def set_decoder(self, decoder):
|
| 159 |
-
self.language_model.set_decoder(decoder)
|
| 160 |
-
|
| 161 |
-
def get_decoder(self):
|
| 162 |
-
return self.language_model.get_decoder()
|
| 163 |
-
|
| 164 |
-
def tie_weights(self):
|
| 165 |
-
return self.language_model.tie_weights()
|
| 166 |
-
|
| 167 |
-
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
| 168 |
-
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
| 169 |
-
# update vocab size
|
| 170 |
-
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
| 171 |
-
self.config.vocab_size = model_embeds.num_embeddings
|
| 172 |
-
self.vocab_size = model_embeds.num_embeddings
|
| 173 |
-
return model_embeds
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
def forward(
|
| 177 |
-
self,
|
| 178 |
-
input_ids: torch.LongTensor = None,
|
| 179 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 180 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 181 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 182 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 183 |
-
labels: Optional[torch.LongTensor] = None,
|
| 184 |
-
use_cache: Optional[bool] = None,
|
| 185 |
-
output_attentions: Optional[bool] = None,
|
| 186 |
-
output_hidden_states: Optional[bool] = None,
|
| 187 |
-
images: Optional[torch.FloatTensor] = None,
|
| 188 |
-
image_sizes: Optional[List[List[int]]] = None,
|
| 189 |
-
return_dict: Optional[bool] = None,
|
| 190 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 191 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 192 |
-
if inputs_embeds is None:
|
| 193 |
-
(
|
| 194 |
-
input_ids,
|
| 195 |
-
position_ids,
|
| 196 |
-
attention_mask,
|
| 197 |
-
past_key_values,
|
| 198 |
-
inputs_embeds,
|
| 199 |
-
labels
|
| 200 |
-
) = self.prepare_inputs_labels_for_multimodal(
|
| 201 |
-
input_ids,
|
| 202 |
-
position_ids,
|
| 203 |
-
attention_mask,
|
| 204 |
-
past_key_values,
|
| 205 |
-
labels,
|
| 206 |
-
images,
|
| 207 |
-
image_sizes
|
| 208 |
-
)
|
| 209 |
-
return self.language_model.forward(
|
| 210 |
-
input_ids=input_ids,
|
| 211 |
-
attention_mask=attention_mask,
|
| 212 |
-
position_ids=position_ids,
|
| 213 |
-
past_key_values=past_key_values,
|
| 214 |
-
inputs_embeds=inputs_embeds,
|
| 215 |
-
labels=labels,
|
| 216 |
-
use_cache=use_cache,
|
| 217 |
-
output_attentions=output_attentions,
|
| 218 |
-
output_hidden_states=output_hidden_states,
|
| 219 |
-
return_dict=return_dict
|
| 220 |
-
)
|
| 221 |
-
|
| 222 |
-
@torch.no_grad()
|
| 223 |
-
def generate(
|
| 224 |
-
self,
|
| 225 |
-
inputs: Optional[torch.Tensor] = None,
|
| 226 |
-
images: Optional[torch.Tensor] = None,
|
| 227 |
-
image_sizes: Optional[torch.Tensor] = None,
|
| 228 |
-
**kwargs,
|
| 229 |
-
) -> Union[GenerateOutput, torch.LongTensor]:
|
| 230 |
-
position_ids = kwargs.pop("position_ids", None)
|
| 231 |
-
attention_mask = kwargs.pop("attention_mask", None)
|
| 232 |
-
if "inputs_embeds" in kwargs:
|
| 233 |
-
raise NotImplementedError("`inputs_embeds` is not supported")
|
| 234 |
-
|
| 235 |
-
if images is not None:
|
| 236 |
-
(
|
| 237 |
-
inputs,
|
| 238 |
-
position_ids,
|
| 239 |
-
attention_mask,
|
| 240 |
-
_,
|
| 241 |
-
inputs_embeds,
|
| 242 |
-
_
|
| 243 |
-
) = self.prepare_inputs_labels_for_multimodal(
|
| 244 |
-
inputs,
|
| 245 |
-
position_ids,
|
| 246 |
-
attention_mask,
|
| 247 |
-
None,
|
| 248 |
-
None,
|
| 249 |
-
images,
|
| 250 |
-
image_sizes=image_sizes
|
| 251 |
-
)
|
| 252 |
-
else:
|
| 253 |
-
inputs_embeds = self.language_model.get_input_embeddings()(inputs)
|
| 254 |
-
|
| 255 |
-
return self.language_model.generate(
|
| 256 |
-
position_ids=position_ids,
|
| 257 |
-
attention_mask=attention_mask,
|
| 258 |
-
inputs_embeds=inputs_embeds,
|
| 259 |
-
**kwargs
|
| 260 |
-
)
|
| 261 |
-
|
| 262 |
-
def encode_images(self, images):
|
| 263 |
-
kwargs = {}
|
| 264 |
-
kwargs['vision_feature_layer'] = self.config.vision_feature_layer
|
| 265 |
-
kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy
|
| 266 |
-
images = images.to(device=self.device, dtype=self.dtype)
|
| 267 |
-
image_features = self.vision_tower(images, **kwargs)
|
| 268 |
-
image_features = self.connector(image_features)
|
| 269 |
-
return image_features
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
| 274 |
-
inputs_embeds=None, **kwargs):
|
| 275 |
-
images = kwargs.pop("images", None)
|
| 276 |
-
image_sizes = kwargs.pop("image_sizes", None)
|
| 277 |
-
inputs = self.language_model.prepare_inputs_for_generation(
|
| 278 |
-
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
| 279 |
-
)
|
| 280 |
-
if images is not None:
|
| 281 |
-
inputs['images'] = images
|
| 282 |
-
if image_sizes is not None:
|
| 283 |
-
inputs['image_sizes'] = image_sizes
|
| 284 |
-
return inputs
|
| 285 |
-
|
| 286 |
-
def prepare_inputs_labels_for_multimodal(
|
| 287 |
-
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
| 288 |
-
images, image_sizes=None
|
| 289 |
-
):
|
| 290 |
-
vision_tower = self.vision_tower
|
| 291 |
-
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
| 292 |
-
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
image_features = self.encode_images(images)
|
| 296 |
-
|
| 297 |
-
# TODO: image start / end is not implemented here to support pretraining.
|
| 298 |
-
if getattr(self.config, 'tune_mm_mlp_adapter', False):
|
| 299 |
-
raise NotImplementedError
|
| 300 |
-
|
| 301 |
-
# Let's just add dummy tensors if they do not exist,
|
| 302 |
-
# it is a headache to deal with None all the time.
|
| 303 |
-
# But it is not ideal, and if you have a better idea,
|
| 304 |
-
# please open an issue / submit a PR, thanks.
|
| 305 |
-
_labels = labels
|
| 306 |
-
_position_ids = position_ids
|
| 307 |
-
_attention_mask = attention_mask
|
| 308 |
-
if attention_mask is None:
|
| 309 |
-
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
| 310 |
-
else:
|
| 311 |
-
attention_mask = attention_mask.bool()
|
| 312 |
-
if position_ids is None:
|
| 313 |
-
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
| 314 |
-
if labels is None:
|
| 315 |
-
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
| 316 |
-
|
| 317 |
-
# remove the padding using attention_mask -- FIXME
|
| 318 |
-
_input_ids = input_ids
|
| 319 |
-
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
| 320 |
-
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
| 321 |
-
|
| 322 |
-
new_input_embeds = []
|
| 323 |
-
new_labels = []
|
| 324 |
-
cur_image_idx = 0
|
| 325 |
-
for batch_idx, cur_input_ids in enumerate(input_ids):
|
| 326 |
-
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
| 327 |
-
if num_images == 0:
|
| 328 |
-
cur_image_features = image_features[cur_image_idx]
|
| 329 |
-
cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids)
|
| 330 |
-
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
| 331 |
-
new_input_embeds.append(cur_input_embeds)
|
| 332 |
-
new_labels.append(labels[batch_idx])
|
| 333 |
-
cur_image_idx += 1
|
| 334 |
-
continue
|
| 335 |
-
|
| 336 |
-
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
| 337 |
-
cur_input_ids_noim = []
|
| 338 |
-
cur_labels = labels[batch_idx]
|
| 339 |
-
cur_labels_noim = []
|
| 340 |
-
for i in range(len(image_token_indices) - 1):
|
| 341 |
-
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
| 342 |
-
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
| 343 |
-
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
| 344 |
-
cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim))
|
| 345 |
-
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
| 346 |
-
cur_new_input_embeds = []
|
| 347 |
-
cur_new_labels = []
|
| 348 |
-
|
| 349 |
-
for i in range(num_images + 1):
|
| 350 |
-
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
| 351 |
-
cur_new_labels.append(cur_labels_noim[i])
|
| 352 |
-
if i < num_images:
|
| 353 |
-
cur_image_features = image_features[cur_image_idx]
|
| 354 |
-
cur_image_idx += 1
|
| 355 |
-
cur_new_input_embeds.append(cur_image_features)
|
| 356 |
-
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
| 357 |
-
|
| 358 |
-
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
| 359 |
-
|
| 360 |
-
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
| 361 |
-
cur_new_labels = torch.cat(cur_new_labels)
|
| 362 |
-
|
| 363 |
-
new_input_embeds.append(cur_new_input_embeds)
|
| 364 |
-
new_labels.append(cur_new_labels)
|
| 365 |
-
|
| 366 |
-
# Truncate sequences to max length as image embeddings can make the sequence longer
|
| 367 |
-
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
| 368 |
-
if tokenizer_model_max_length is not None:
|
| 369 |
-
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
| 370 |
-
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
| 371 |
-
|
| 372 |
-
# Combine them
|
| 373 |
-
max_len = max(x.shape[0] for x in new_input_embeds)
|
| 374 |
-
batch_size = len(new_input_embeds)
|
| 375 |
-
|
| 376 |
-
new_input_embeds_padded = []
|
| 377 |
-
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
| 378 |
-
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
| 379 |
-
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
| 380 |
-
|
| 381 |
-
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
| 382 |
-
cur_len = cur_new_embed.shape[0]
|
| 383 |
-
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
| 384 |
-
new_input_embeds_padded.append(torch.cat((
|
| 385 |
-
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
| 386 |
-
cur_new_embed
|
| 387 |
-
), dim=0))
|
| 388 |
-
if cur_len > 0:
|
| 389 |
-
new_labels_padded[i, -cur_len:] = cur_new_labels
|
| 390 |
-
attention_mask[i, -cur_len:] = True
|
| 391 |
-
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
| 392 |
-
else:
|
| 393 |
-
new_input_embeds_padded.append(torch.cat((
|
| 394 |
-
cur_new_embed,
|
| 395 |
-
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
| 396 |
-
), dim=0))
|
| 397 |
-
if cur_len > 0:
|
| 398 |
-
new_labels_padded[i, :cur_len] = cur_new_labels
|
| 399 |
-
attention_mask[i, :cur_len] = True
|
| 400 |
-
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
| 401 |
-
|
| 402 |
-
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
| 403 |
-
|
| 404 |
-
if _labels is None:
|
| 405 |
-
new_labels = None
|
| 406 |
-
else:
|
| 407 |
-
new_labels = new_labels_padded
|
| 408 |
-
|
| 409 |
-
if _attention_mask is None:
|
| 410 |
-
attention_mask = None
|
| 411 |
-
else:
|
| 412 |
-
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
| 413 |
-
|
| 414 |
-
if _position_ids is None:
|
| 415 |
-
position_ids = None
|
| 416 |
-
|
| 417 |
-
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
| 418 |
-
|
| 419 |
-
def chat(
|
| 420 |
-
self,
|
| 421 |
-
prompt: str,
|
| 422 |
-
tokenizer = None,
|
| 423 |
-
image: str = None,
|
| 424 |
-
max_new_tokens: int = 512,
|
| 425 |
-
num_beams = 1,
|
| 426 |
-
top_p=None,
|
| 427 |
-
temperature=0
|
| 428 |
-
):
|
| 429 |
-
image_processor = self.vision_tower._image_processor
|
| 430 |
-
|
| 431 |
-
if image is not None:
|
| 432 |
-
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
|
| 433 |
-
conv = conv_phi_v0.copy()
|
| 434 |
-
conv.append_message(conv.roles[0], prompt)
|
| 435 |
-
conv.append_message(conv.roles[1], None)
|
| 436 |
-
prompt = conv.get_prompt()
|
| 437 |
-
if image is not None:
|
| 438 |
-
image = load_image(image)
|
| 439 |
-
image_tensor = process_images(image, image_processor, self.config).to(self.device)
|
| 440 |
-
|
| 441 |
-
input_ids = (
|
| 442 |
-
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
| 443 |
-
.unsqueeze(0).to(self.device)
|
| 444 |
-
)
|
| 445 |
-
# Generate
|
| 446 |
-
stime = time.time()
|
| 447 |
-
|
| 448 |
-
with torch.inference_mode():
|
| 449 |
-
output_ids = self.generate(
|
| 450 |
-
input_ids,
|
| 451 |
-
images=image_tensor,
|
| 452 |
-
do_sample=True if temperature > 0 else False,
|
| 453 |
-
temperature=temperature,
|
| 454 |
-
top_p=top_p,
|
| 455 |
-
num_beams=num_beams,
|
| 456 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 457 |
-
max_new_tokens=max_new_tokens,
|
| 458 |
-
use_cache=True,
|
| 459 |
-
# stopping_criteria=[stopping_criteria],
|
| 460 |
-
)
|
| 461 |
-
|
| 462 |
-
# print('inference over')
|
| 463 |
-
generation_time = time.time() - stime
|
| 464 |
-
outputs = tokenizer.batch_decode(
|
| 465 |
-
output_ids, skip_special_tokens=True
|
| 466 |
-
)[0]
|
| 467 |
-
|
| 468 |
-
outputs = outputs.strip()
|
| 469 |
-
|
| 470 |
-
return outputs, generation_time
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
AutoConfig.register("tinyllava", TinyLlavaConfig)
|
| 474 |
AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration)
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import List, Optional, Tuple, Union
|
| 3 |
+
import ast
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.utils.checkpoint
|
| 8 |
+
from torch import nn, Tensor
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
|
| 11 |
+
from transformers import PreTrainedModel
|
| 12 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 13 |
+
from transformers.generation.utils import GenerateOutput
|
| 14 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, SiglipVisionModel, SiglipImageProcessor
|
| 15 |
+
|
| 16 |
+
from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 17 |
+
|
| 18 |
+
from transformers import AutoConfig, AutoModelForCausalLM, PhiForCausalLM
|
| 19 |
+
from .data_preprocess import *
|
| 20 |
+
|
| 21 |
+
# from tinyllava.utils.data_utils import get_value_from_kwargs
|
| 22 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
| 23 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
| 24 |
+
|
| 25 |
+
LOGDIR = "."
|
| 26 |
+
#
|
| 27 |
+
# For licensing see accompanying LICENSE file.
|
| 28 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
| 29 |
+
#
|
| 30 |
+
from transformers.utils import logging
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__)
|
| 33 |
+
|
| 34 |
+
# this import has to be relative, otherwise, when setting trust_remote_code=True
|
| 35 |
+
# huggingface transformers won't be able to load the module correctly
|
| 36 |
+
from numbers import Number
|
| 37 |
+
from typing import List, Optional, Union
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
ACT_TYPE = {
|
| 43 |
+
'relu': nn.ReLU,
|
| 44 |
+
'gelu': nn.GELU
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
class Connector(nn.Module):
|
| 48 |
+
def __init__(self, config=None):
|
| 49 |
+
super().__init__()
|
| 50 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', config.connector_type)
|
| 51 |
+
act_type = config.connector_type.split('_')[-1]
|
| 52 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
| 53 |
+
modules = [nn.Linear(config.vision_hidden_size, config.hidden_size)]
|
| 54 |
+
for _ in range(1, mlp_depth):
|
| 55 |
+
modules.append(ACT_TYPE[act_type]())
|
| 56 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
| 57 |
+
|
| 58 |
+
self._connector = nn.Sequential(*modules)
|
| 59 |
+
|
| 60 |
+
def forward(self, x):
|
| 61 |
+
return self._connector(x)
|
| 62 |
+
|
| 63 |
+
class VisionTower(nn.Module):
|
| 64 |
+
def __init__(self, cfg, model_name_or_path = 'clip'):
|
| 65 |
+
super().__init__()
|
| 66 |
+
if 'clip' in model_name_or_path:
|
| 67 |
+
self._vision_tower = CLIPVisionModel(cfg)
|
| 68 |
+
self._image_processor = CLIPImageProcessor.from_pretrained(cfg.model_name_or_path)
|
| 69 |
+
else:
|
| 70 |
+
self._vision_tower = SiglipVisionModel(cfg)
|
| 71 |
+
self._image_processor = SiglipImageProcessor.from_pretrained(cfg.model_name_or_path)
|
| 72 |
+
|
| 73 |
+
self.config = cfg
|
| 74 |
+
|
| 75 |
+
def forward(self, x, **kwargs):
|
| 76 |
+
image_features = self._vision_tower(x, output_hidden_states=True)
|
| 77 |
+
image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)]
|
| 78 |
+
|
| 79 |
+
if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch':
|
| 80 |
+
image_features = image_features[:, 1:]
|
| 81 |
+
elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch':
|
| 82 |
+
image_features = image_features
|
| 83 |
+
else:
|
| 84 |
+
raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}")
|
| 85 |
+
|
| 86 |
+
return image_features
|
| 87 |
+
|
| 88 |
+
@property
|
| 89 |
+
def vision_tower(self):
|
| 90 |
+
return self._vision_tower
|
| 91 |
+
|
| 92 |
+
@vision_tower.setter
|
| 93 |
+
def vision_tower(self, vision_tower):
|
| 94 |
+
self._vision_tower = vision_tower
|
| 95 |
+
|
| 96 |
+
def get_value_from_kwargs(kwargs, name):
|
| 97 |
+
if name in kwargs:
|
| 98 |
+
return kwargs.pop(name)
|
| 99 |
+
else:
|
| 100 |
+
return None
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class TinyLlavaPreTrainedModel(PreTrainedModel):
|
| 104 |
+
config_class = TinyLlavaConfig
|
| 105 |
+
base_model_prefix = "model"
|
| 106 |
+
supports_gradient_checkpointing = True
|
| 107 |
+
_no_split_modules = ["LlavaVisionAttention"]
|
| 108 |
+
_skip_keys_device_placement = "past_key_values"
|
| 109 |
+
_supports_flash_attn_2 = True
|
| 110 |
+
|
| 111 |
+
def _init_weights(self, module):
|
| 112 |
+
std = (
|
| 113 |
+
self.config.initializer_range
|
| 114 |
+
if hasattr(self.config, "initializer_range")
|
| 115 |
+
else self.config.text_config.initializer_range
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
if hasattr(module, "class_embedding"):
|
| 119 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
| 120 |
+
|
| 121 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 122 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 123 |
+
if module.bias is not None:
|
| 124 |
+
module.bias.data.zero_()
|
| 125 |
+
elif isinstance(module, nn.Embedding):
|
| 126 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 127 |
+
if module.padding_idx is not None:
|
| 128 |
+
module.weight.data[module.padding_idx].zero_()
|
| 129 |
+
|
| 130 |
+
@property
|
| 131 |
+
def _supports_sdpa(self):
|
| 132 |
+
return self.language_model._supports_sdpa
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel):
|
| 136 |
+
def __init__(self, config: TinyLlavaConfig):
|
| 137 |
+
|
| 138 |
+
super().__init__(config)
|
| 139 |
+
|
| 140 |
+
self.language_model = PhiForCausalLM(config.text_config)
|
| 141 |
+
self.vision_tower = VisionTower(config.vision_config, config.vision_model_name_or_path)
|
| 142 |
+
self.connector = Connector(config)
|
| 143 |
+
self.post_init()
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def get_input_embeddings(self):
|
| 147 |
+
return self.language_model.get_input_embeddings()
|
| 148 |
+
|
| 149 |
+
def set_input_embeddings(self, value):
|
| 150 |
+
self.language_model.set_input_embeddings(value)
|
| 151 |
+
|
| 152 |
+
def get_output_embeddings(self):
|
| 153 |
+
return self.language_model.get_output_embeddings()
|
| 154 |
+
|
| 155 |
+
def set_output_embeddings(self, new_embeddings):
|
| 156 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
| 157 |
+
|
| 158 |
+
def set_decoder(self, decoder):
|
| 159 |
+
self.language_model.set_decoder(decoder)
|
| 160 |
+
|
| 161 |
+
def get_decoder(self):
|
| 162 |
+
return self.language_model.get_decoder()
|
| 163 |
+
|
| 164 |
+
def tie_weights(self):
|
| 165 |
+
return self.language_model.tie_weights()
|
| 166 |
+
|
| 167 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
| 168 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
| 169 |
+
# update vocab size
|
| 170 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
| 171 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
| 172 |
+
self.vocab_size = model_embeds.num_embeddings
|
| 173 |
+
return model_embeds
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def forward(
|
| 177 |
+
self,
|
| 178 |
+
input_ids: torch.LongTensor = None,
|
| 179 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 180 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 181 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 182 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 183 |
+
labels: Optional[torch.LongTensor] = None,
|
| 184 |
+
use_cache: Optional[bool] = None,
|
| 185 |
+
output_attentions: Optional[bool] = None,
|
| 186 |
+
output_hidden_states: Optional[bool] = None,
|
| 187 |
+
images: Optional[torch.FloatTensor] = None,
|
| 188 |
+
image_sizes: Optional[List[List[int]]] = None,
|
| 189 |
+
return_dict: Optional[bool] = None,
|
| 190 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 191 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 192 |
+
if inputs_embeds is None:
|
| 193 |
+
(
|
| 194 |
+
input_ids,
|
| 195 |
+
position_ids,
|
| 196 |
+
attention_mask,
|
| 197 |
+
past_key_values,
|
| 198 |
+
inputs_embeds,
|
| 199 |
+
labels
|
| 200 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
| 201 |
+
input_ids,
|
| 202 |
+
position_ids,
|
| 203 |
+
attention_mask,
|
| 204 |
+
past_key_values,
|
| 205 |
+
labels,
|
| 206 |
+
images,
|
| 207 |
+
image_sizes
|
| 208 |
+
)
|
| 209 |
+
return self.language_model.forward(
|
| 210 |
+
input_ids=input_ids,
|
| 211 |
+
attention_mask=attention_mask,
|
| 212 |
+
position_ids=position_ids,
|
| 213 |
+
past_key_values=past_key_values,
|
| 214 |
+
inputs_embeds=inputs_embeds,
|
| 215 |
+
labels=labels,
|
| 216 |
+
use_cache=use_cache,
|
| 217 |
+
output_attentions=output_attentions,
|
| 218 |
+
output_hidden_states=output_hidden_states,
|
| 219 |
+
return_dict=return_dict
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
@torch.no_grad()
|
| 223 |
+
def generate(
|
| 224 |
+
self,
|
| 225 |
+
inputs: Optional[torch.Tensor] = None,
|
| 226 |
+
images: Optional[torch.Tensor] = None,
|
| 227 |
+
image_sizes: Optional[torch.Tensor] = None,
|
| 228 |
+
**kwargs,
|
| 229 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
| 230 |
+
position_ids = kwargs.pop("position_ids", None)
|
| 231 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
| 232 |
+
if "inputs_embeds" in kwargs:
|
| 233 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
| 234 |
+
|
| 235 |
+
if images is not None:
|
| 236 |
+
(
|
| 237 |
+
inputs,
|
| 238 |
+
position_ids,
|
| 239 |
+
attention_mask,
|
| 240 |
+
_,
|
| 241 |
+
inputs_embeds,
|
| 242 |
+
_
|
| 243 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
| 244 |
+
inputs,
|
| 245 |
+
position_ids,
|
| 246 |
+
attention_mask,
|
| 247 |
+
None,
|
| 248 |
+
None,
|
| 249 |
+
images,
|
| 250 |
+
image_sizes=image_sizes
|
| 251 |
+
)
|
| 252 |
+
else:
|
| 253 |
+
inputs_embeds = self.language_model.get_input_embeddings()(inputs)
|
| 254 |
+
|
| 255 |
+
return self.language_model.generate(
|
| 256 |
+
position_ids=position_ids,
|
| 257 |
+
attention_mask=attention_mask,
|
| 258 |
+
inputs_embeds=inputs_embeds,
|
| 259 |
+
**kwargs
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
def encode_images(self, images):
|
| 263 |
+
kwargs = {}
|
| 264 |
+
kwargs['vision_feature_layer'] = self.config.vision_feature_layer
|
| 265 |
+
kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy
|
| 266 |
+
images = images.to(device=self.device, dtype=self.dtype)
|
| 267 |
+
image_features = self.vision_tower(images, **kwargs)
|
| 268 |
+
image_features = self.connector(image_features)
|
| 269 |
+
return image_features
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
| 274 |
+
inputs_embeds=None, **kwargs):
|
| 275 |
+
images = kwargs.pop("images", None)
|
| 276 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
| 277 |
+
inputs = self.language_model.prepare_inputs_for_generation(
|
| 278 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
| 279 |
+
)
|
| 280 |
+
if images is not None:
|
| 281 |
+
inputs['images'] = images
|
| 282 |
+
if image_sizes is not None:
|
| 283 |
+
inputs['image_sizes'] = image_sizes
|
| 284 |
+
return inputs
|
| 285 |
+
|
| 286 |
+
def prepare_inputs_labels_for_multimodal(
|
| 287 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
| 288 |
+
images, image_sizes=None
|
| 289 |
+
):
|
| 290 |
+
vision_tower = self.vision_tower
|
| 291 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
| 292 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
image_features = self.encode_images(images)
|
| 296 |
+
|
| 297 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
| 298 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False):
|
| 299 |
+
raise NotImplementedError
|
| 300 |
+
|
| 301 |
+
# Let's just add dummy tensors if they do not exist,
|
| 302 |
+
# it is a headache to deal with None all the time.
|
| 303 |
+
# But it is not ideal, and if you have a better idea,
|
| 304 |
+
# please open an issue / submit a PR, thanks.
|
| 305 |
+
_labels = labels
|
| 306 |
+
_position_ids = position_ids
|
| 307 |
+
_attention_mask = attention_mask
|
| 308 |
+
if attention_mask is None:
|
| 309 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
| 310 |
+
else:
|
| 311 |
+
attention_mask = attention_mask.bool()
|
| 312 |
+
if position_ids is None:
|
| 313 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
| 314 |
+
if labels is None:
|
| 315 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
| 316 |
+
|
| 317 |
+
# remove the padding using attention_mask -- FIXME
|
| 318 |
+
_input_ids = input_ids
|
| 319 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
| 320 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
| 321 |
+
|
| 322 |
+
new_input_embeds = []
|
| 323 |
+
new_labels = []
|
| 324 |
+
cur_image_idx = 0
|
| 325 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
| 326 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
| 327 |
+
if num_images == 0:
|
| 328 |
+
cur_image_features = image_features[cur_image_idx]
|
| 329 |
+
cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids)
|
| 330 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
| 331 |
+
new_input_embeds.append(cur_input_embeds)
|
| 332 |
+
new_labels.append(labels[batch_idx])
|
| 333 |
+
cur_image_idx += 1
|
| 334 |
+
continue
|
| 335 |
+
|
| 336 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
| 337 |
+
cur_input_ids_noim = []
|
| 338 |
+
cur_labels = labels[batch_idx]
|
| 339 |
+
cur_labels_noim = []
|
| 340 |
+
for i in range(len(image_token_indices) - 1):
|
| 341 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
| 342 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
| 343 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
| 344 |
+
cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim))
|
| 345 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
| 346 |
+
cur_new_input_embeds = []
|
| 347 |
+
cur_new_labels = []
|
| 348 |
+
|
| 349 |
+
for i in range(num_images + 1):
|
| 350 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
| 351 |
+
cur_new_labels.append(cur_labels_noim[i])
|
| 352 |
+
if i < num_images:
|
| 353 |
+
cur_image_features = image_features[cur_image_idx]
|
| 354 |
+
cur_image_idx += 1
|
| 355 |
+
cur_new_input_embeds.append(cur_image_features)
|
| 356 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
| 357 |
+
|
| 358 |
+
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
| 359 |
+
|
| 360 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
| 361 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
| 362 |
+
|
| 363 |
+
new_input_embeds.append(cur_new_input_embeds)
|
| 364 |
+
new_labels.append(cur_new_labels)
|
| 365 |
+
|
| 366 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
| 367 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
| 368 |
+
if tokenizer_model_max_length is not None:
|
| 369 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
| 370 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
| 371 |
+
|
| 372 |
+
# Combine them
|
| 373 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
| 374 |
+
batch_size = len(new_input_embeds)
|
| 375 |
+
|
| 376 |
+
new_input_embeds_padded = []
|
| 377 |
+
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
| 378 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
| 379 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
| 380 |
+
|
| 381 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
| 382 |
+
cur_len = cur_new_embed.shape[0]
|
| 383 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
| 384 |
+
new_input_embeds_padded.append(torch.cat((
|
| 385 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
| 386 |
+
cur_new_embed
|
| 387 |
+
), dim=0))
|
| 388 |
+
if cur_len > 0:
|
| 389 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
| 390 |
+
attention_mask[i, -cur_len:] = True
|
| 391 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
| 392 |
+
else:
|
| 393 |
+
new_input_embeds_padded.append(torch.cat((
|
| 394 |
+
cur_new_embed,
|
| 395 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
| 396 |
+
), dim=0))
|
| 397 |
+
if cur_len > 0:
|
| 398 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
| 399 |
+
attention_mask[i, :cur_len] = True
|
| 400 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
| 401 |
+
|
| 402 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
| 403 |
+
|
| 404 |
+
if _labels is None:
|
| 405 |
+
new_labels = None
|
| 406 |
+
else:
|
| 407 |
+
new_labels = new_labels_padded
|
| 408 |
+
|
| 409 |
+
if _attention_mask is None:
|
| 410 |
+
attention_mask = None
|
| 411 |
+
else:
|
| 412 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
| 413 |
+
|
| 414 |
+
if _position_ids is None:
|
| 415 |
+
position_ids = None
|
| 416 |
+
|
| 417 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
| 418 |
+
|
| 419 |
+
def chat(
|
| 420 |
+
self,
|
| 421 |
+
prompt: str,
|
| 422 |
+
tokenizer = None,
|
| 423 |
+
image: str = None,
|
| 424 |
+
max_new_tokens: int = 512,
|
| 425 |
+
num_beams = 1,
|
| 426 |
+
top_p=None,
|
| 427 |
+
temperature=0
|
| 428 |
+
):
|
| 429 |
+
image_processor = self.vision_tower._image_processor
|
| 430 |
+
|
| 431 |
+
if image is not None:
|
| 432 |
+
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
|
| 433 |
+
conv = conv_phi_v0.copy()
|
| 434 |
+
conv.append_message(conv.roles[0], prompt)
|
| 435 |
+
conv.append_message(conv.roles[1], None)
|
| 436 |
+
prompt = conv.get_prompt()
|
| 437 |
+
if image is not None:
|
| 438 |
+
image = load_image(image)
|
| 439 |
+
image_tensor = process_images(image, image_processor, self.config).to(self.device)
|
| 440 |
+
|
| 441 |
+
input_ids = (
|
| 442 |
+
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
| 443 |
+
.unsqueeze(0).to(self.device)
|
| 444 |
+
)
|
| 445 |
+
# Generate
|
| 446 |
+
stime = time.time()
|
| 447 |
+
|
| 448 |
+
with torch.inference_mode():
|
| 449 |
+
output_ids = self.generate(
|
| 450 |
+
input_ids,
|
| 451 |
+
images=image_tensor,
|
| 452 |
+
do_sample=True if temperature > 0 else False,
|
| 453 |
+
temperature=temperature,
|
| 454 |
+
top_p=top_p,
|
| 455 |
+
num_beams=num_beams,
|
| 456 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 457 |
+
max_new_tokens=max_new_tokens,
|
| 458 |
+
use_cache=True,
|
| 459 |
+
# stopping_criteria=[stopping_criteria],
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
# print('inference over')
|
| 463 |
+
generation_time = time.time() - stime
|
| 464 |
+
outputs = tokenizer.batch_decode(
|
| 465 |
+
output_ids, skip_special_tokens=True
|
| 466 |
+
)[0]
|
| 467 |
+
|
| 468 |
+
outputs = outputs.strip()
|
| 469 |
+
|
| 470 |
+
return outputs, generation_time
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
AutoConfig.register("tinyllava", TinyLlavaConfig)
|
| 474 |
AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration)
|