Upload folder using huggingface_hub
Browse files- README.md +264 -0
- chat_template.jinja +20 -0
- config.json +62 -0
- generation_config.json +9 -0
- model.safetensors +3 -0
- processor_config.json +6 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
pipeline_tag: text-generation
|
| 4 |
+
inference: true
|
| 5 |
+
widget:
|
| 6 |
+
- text: Hello!
|
| 7 |
+
example_title: Hello world
|
| 8 |
+
group: Python
|
| 9 |
+
base_model:
|
| 10 |
+
- stepfun-ai/step3
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
This tiny model is for debugging. It is randomly initialized with the config adapted from [stepfun-ai/step3](https://huggingface.co/stepfun-ai/step3).
|
| 14 |
+
|
| 15 |
+
Note: if you want the model version that follows transformers' naming, see the model without "-vllm" suffix.
|
| 16 |
+
|
| 17 |
+
### Example usage:
|
| 18 |
+
|
| 19 |
+
- vLLM
|
| 20 |
+
|
| 21 |
+
```bash
|
| 22 |
+
vllm serve tiny-random/step3-vllm --trust-remote-code
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
- Transformers
|
| 26 |
+
|
| 27 |
+
```python
|
| 28 |
+
# Note: it's more convenient to use the model without "-vllm" suffix, which follows transformers' naming. Here "key_mapping" is a workaround.
|
| 29 |
+
|
| 30 |
+
import torch
|
| 31 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 32 |
+
|
| 33 |
+
model_id = "tiny-random/step3-vllm"
|
| 34 |
+
key_mapping = {
|
| 35 |
+
"^vision_model": "model.vision_model",
|
| 36 |
+
r"^model(?!\.(language_model|vision_model))": "model.language_model",
|
| 37 |
+
"vit_downsampler": "model.vit_downsampler",
|
| 38 |
+
"vit_downsampler2": "model.vit_downsampler2",
|
| 39 |
+
"vit_large_projector": "model.vit_large_projector",
|
| 40 |
+
}
|
| 41 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 43 |
+
model_id,
|
| 44 |
+
device_map="cuda", torch_dtype=torch.bfloat16,
|
| 45 |
+
trust_remote_code=True, key_mapping=key_mapping,
|
| 46 |
+
)
|
| 47 |
+
messages = [
|
| 48 |
+
{
|
| 49 |
+
"role": "user",
|
| 50 |
+
"content": [
|
| 51 |
+
{"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"},
|
| 52 |
+
{"type": "text", "text": "What's in this picture?"}
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
]
|
| 56 |
+
inputs = processor.apply_chat_template(
|
| 57 |
+
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
|
| 58 |
+
).to(model.device)
|
| 59 |
+
generate_ids = model.generate(**inputs, max_new_tokens=32, do_sample=False)
|
| 60 |
+
decoded = processor.decode(generate_ids[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=False)
|
| 61 |
+
print(decoded)
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
### Codes to create this repo:
|
| 65 |
+
|
| 66 |
+
```python
|
| 67 |
+
import json
|
| 68 |
+
from pathlib import Path
|
| 69 |
+
|
| 70 |
+
import accelerate
|
| 71 |
+
import torch
|
| 72 |
+
from huggingface_hub import file_exists, hf_hub_download
|
| 73 |
+
from transformers import (
|
| 74 |
+
AutoConfig,
|
| 75 |
+
AutoModelForCausalLM,
|
| 76 |
+
AutoProcessor,
|
| 77 |
+
AutoTokenizer,
|
| 78 |
+
GenerationConfig,
|
| 79 |
+
set_seed,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
source_model_id = "stepfun-ai/step3"
|
| 83 |
+
save_folder = "/tmp/tiny-random/step3-vllm"
|
| 84 |
+
|
| 85 |
+
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
|
| 86 |
+
processor.save_pretrained(save_folder)
|
| 87 |
+
|
| 88 |
+
def rewrite_automap(filepath: str, source_model_id: str, overrides: dict = None):
|
| 89 |
+
import json
|
| 90 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
| 91 |
+
config = json.load(f)
|
| 92 |
+
for k, v in config['auto_map'].items():
|
| 93 |
+
v = v.split('--')[-1]
|
| 94 |
+
config['auto_map'][k] = f'{source_model_id}--{v}'
|
| 95 |
+
if overrides is not None:
|
| 96 |
+
config.update(overrides)
|
| 97 |
+
with open(filepath, 'w', encoding='utf - 8') as f:
|
| 98 |
+
json.dump(config, f, indent=2)
|
| 99 |
+
|
| 100 |
+
rewrite_automap(f'{save_folder}/processor_config.json', source_model_id)
|
| 101 |
+
rewrite_automap(f'{save_folder}/tokenizer_config.json', source_model_id)
|
| 102 |
+
|
| 103 |
+
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
|
| 104 |
+
config_json = json.load(f)
|
| 105 |
+
|
| 106 |
+
for k, v in config_json['auto_map'].items():
|
| 107 |
+
config_json['auto_map'][k] = f'{source_model_id}--{v}'
|
| 108 |
+
config_json['architectures'] = ["Step3VLForConditionalGeneration"]
|
| 109 |
+
config_json['text_config'].update({
|
| 110 |
+
"hidden_size": 32,
|
| 111 |
+
"intermediate_size": 64,
|
| 112 |
+
"num_hidden_layers": 2,
|
| 113 |
+
"num_attention_heads": 2,
|
| 114 |
+
"num_attention_groups": 1,
|
| 115 |
+
"head_dim": 256,
|
| 116 |
+
"share_q_dim": 512,
|
| 117 |
+
"moe_layers_enum": "1",
|
| 118 |
+
"moe_num_experts": 8,
|
| 119 |
+
"moe_top_k": 3,
|
| 120 |
+
"moe_intermediate_size": 64,
|
| 121 |
+
"share_expert_dim": 64,
|
| 122 |
+
"tie_word_embeddings": True,
|
| 123 |
+
})
|
| 124 |
+
config_json['vision_config'].update({
|
| 125 |
+
"hidden_size": 64,
|
| 126 |
+
"output_hidden_size": 64,
|
| 127 |
+
"intermediate_size": 128,
|
| 128 |
+
"num_hidden_layers": 2,
|
| 129 |
+
"num_attention_heads": 2
|
| 130 |
+
})
|
| 131 |
+
|
| 132 |
+
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
|
| 133 |
+
json.dump(config_json, f, indent=2)
|
| 134 |
+
config = AutoConfig.from_pretrained(
|
| 135 |
+
save_folder,
|
| 136 |
+
trust_remote_code=True,
|
| 137 |
+
)
|
| 138 |
+
print(config)
|
| 139 |
+
automap = config_json['auto_map']
|
| 140 |
+
torch.set_default_dtype(torch.bfloat16)
|
| 141 |
+
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
|
| 142 |
+
torch.set_default_dtype(torch.float32)
|
| 143 |
+
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
|
| 144 |
+
model.generation_config = GenerationConfig.from_pretrained(
|
| 145 |
+
source_model_id, trust_remote_code=True,
|
| 146 |
+
)
|
| 147 |
+
set_seed(42)
|
| 148 |
+
model = model.cpu() # cpu is more stable for random initialization across machines
|
| 149 |
+
with torch.no_grad():
|
| 150 |
+
for name, p in sorted(model.named_parameters()):
|
| 151 |
+
torch.nn.init.normal_(p, 0, 0.2)
|
| 152 |
+
print(name, p.shape)
|
| 153 |
+
|
| 154 |
+
model.save_pretrained(save_folder)
|
| 155 |
+
|
| 156 |
+
import safetensors
|
| 157 |
+
new_tensors = {}
|
| 158 |
+
with safetensors.safe_open(f'{save_folder}/model.safetensors', framework='pt', device='cpu') as f:
|
| 159 |
+
for k in list(f.keys()):
|
| 160 |
+
v = f.get_tensor(k)
|
| 161 |
+
if k.startswith('model.language_model.'):
|
| 162 |
+
k = k.replace('model.language_model.', 'model.')
|
| 163 |
+
new_tensors[k] = v
|
| 164 |
+
elif k.startswith('model.vi'):
|
| 165 |
+
k = k.replace('model.vi', 'vi')
|
| 166 |
+
new_tensors[k] = v
|
| 167 |
+
else:
|
| 168 |
+
new_tensors[k] = v
|
| 169 |
+
safetensors.torch.save_file(new_tensors, f"{save_folder}/model.safetensors")
|
| 170 |
+
|
| 171 |
+
rewrite_automap(
|
| 172 |
+
f'{save_folder}/config.json', source_model_id,
|
| 173 |
+
overrides=dict(architectures=['Step3VLForConditionalGeneration']),
|
| 174 |
+
)
|
| 175 |
+
for python_file in Path(save_folder).glob('*.py'):
|
| 176 |
+
if python_file.name.startswith('modeling_') or python_file.name.startswith('configuration_') or python_file.name.endswith('.py'):
|
| 177 |
+
python_file.unlink()
|
| 178 |
+
```
|
| 179 |
+
|
| 180 |
+
### Printing the model:
|
| 181 |
+
|
| 182 |
+
```text
|
| 183 |
+
Step3vForConditionalGeneration(
|
| 184 |
+
(model): Step3vModel(
|
| 185 |
+
(vision_model): StepCLIPVisionTransformer(
|
| 186 |
+
(embeddings): StepCLIPVisionEmbeddings(
|
| 187 |
+
(patch_embedding): Conv2d(3, 64, kernel_size=(14, 14), stride=(14, 14))
|
| 188 |
+
(position_embedding): Embedding(2705, 64)
|
| 189 |
+
)
|
| 190 |
+
(transformer): StepCLIPEncoder(
|
| 191 |
+
(layers): ModuleList(
|
| 192 |
+
(0-1): 2 x StepCLIPEncoderLayer(
|
| 193 |
+
(layer_norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
| 194 |
+
(layer_norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
| 195 |
+
(self_attn): StepCLIPAttention(
|
| 196 |
+
(qkv_proj): Linear(in_features=64, out_features=192, bias=True)
|
| 197 |
+
(out_proj): Linear(in_features=64, out_features=64, bias=True)
|
| 198 |
+
)
|
| 199 |
+
(mlp): StepCLIPMLP(
|
| 200 |
+
(fc1): Linear(in_features=64, out_features=128, bias=True)
|
| 201 |
+
(act): QuickGELUActivation()
|
| 202 |
+
(fc2): Linear(in_features=128, out_features=64, bias=True)
|
| 203 |
+
)
|
| 204 |
+
)
|
| 205 |
+
)
|
| 206 |
+
)
|
| 207 |
+
)
|
| 208 |
+
(language_model): Step3Model(
|
| 209 |
+
(embed_tokens): Embedding(128815, 32)
|
| 210 |
+
(layers): ModuleList(
|
| 211 |
+
(0): Step3vDecoderLayer(
|
| 212 |
+
(self_attn): Step3vAttention(
|
| 213 |
+
(q_proj): Linear(in_features=32, out_features=512, bias=False)
|
| 214 |
+
(k_proj): Linear(in_features=32, out_features=256, bias=False)
|
| 215 |
+
(v_proj): Linear(in_features=32, out_features=256, bias=False)
|
| 216 |
+
(o_proj): Linear(in_features=512, out_features=32, bias=False)
|
| 217 |
+
(inter_norm): Step3vRMSNorm((512,), eps=1e-05)
|
| 218 |
+
(wq): Linear(in_features=512, out_features=512, bias=False)
|
| 219 |
+
)
|
| 220 |
+
(mlp): Step3vMLP(
|
| 221 |
+
(gate_proj): Linear(in_features=32, out_features=64, bias=False)
|
| 222 |
+
(up_proj): Linear(in_features=32, out_features=64, bias=False)
|
| 223 |
+
(down_proj): Linear(in_features=64, out_features=32, bias=False)
|
| 224 |
+
(act_fn): SiLU()
|
| 225 |
+
)
|
| 226 |
+
(input_layernorm): Step3vRMSNorm((32,), eps=1e-05)
|
| 227 |
+
(post_attention_layernorm): Step3vRMSNorm((32,), eps=1e-05)
|
| 228 |
+
)
|
| 229 |
+
(1): Step3vDecoderLayer(
|
| 230 |
+
(self_attn): Step3vAttention(
|
| 231 |
+
(q_proj): Linear(in_features=32, out_features=512, bias=False)
|
| 232 |
+
(k_proj): Linear(in_features=32, out_features=256, bias=False)
|
| 233 |
+
(v_proj): Linear(in_features=32, out_features=256, bias=False)
|
| 234 |
+
(o_proj): Linear(in_features=512, out_features=32, bias=False)
|
| 235 |
+
(inter_norm): Step3vRMSNorm((512,), eps=1e-05)
|
| 236 |
+
(wq): Linear(in_features=512, out_features=512, bias=False)
|
| 237 |
+
)
|
| 238 |
+
(moe): Step3vMoEMLP(
|
| 239 |
+
(gate): Linear(in_features=32, out_features=8, bias=False)
|
| 240 |
+
(up_proj): MoELinear()
|
| 241 |
+
(gate_proj): MoELinear()
|
| 242 |
+
(down_proj): MoELinear()
|
| 243 |
+
(act_fn): SiLU()
|
| 244 |
+
)
|
| 245 |
+
(share_expert): Step3vMLP(
|
| 246 |
+
(gate_proj): Linear(in_features=32, out_features=64, bias=False)
|
| 247 |
+
(up_proj): Linear(in_features=32, out_features=64, bias=False)
|
| 248 |
+
(down_proj): Linear(in_features=64, out_features=32, bias=False)
|
| 249 |
+
(act_fn): SiLU()
|
| 250 |
+
)
|
| 251 |
+
(input_layernorm): Step3vRMSNorm((32,), eps=1e-05)
|
| 252 |
+
(post_attention_layernorm): Step3vRMSNorm((32,), eps=1e-05)
|
| 253 |
+
)
|
| 254 |
+
)
|
| 255 |
+
(norm): Step3vRMSNorm((32,), eps=1e-05)
|
| 256 |
+
(rotary_emb): Step3vRotaryEmbedding()
|
| 257 |
+
)
|
| 258 |
+
(vit_downsampler): Conv2d(64, 64, kernel_size=(2, 2), stride=(2, 2))
|
| 259 |
+
(vit_downsampler2): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
| 260 |
+
(vit_large_projector): Linear(in_features=128, out_features=32, bias=False)
|
| 261 |
+
)
|
| 262 |
+
(lm_head): Linear(in_features=32, out_features=128815, bias=False)
|
| 263 |
+
)
|
| 264 |
+
```
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{% macro render_content(content) %} {% if content is string %}{{- content }}{% elif content is mapping %}{{- content['value'] if 'value' in content else content['text'] }}{% elif content is iterable %}{% for item in content %}{% if item.type == 'text' %}{{- item['value'] if 'value' in item else item['text'] }}{% elif item.type == 'image' %}<im_patch>{% endif %}{% endfor %}{% endif %} {% endmacro %}{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message.role == 'system' %}{{ render_content(message['content']) }}{% endif %}{% endfor %}{% if tools is defined and tools %}{% set ns = namespace(data='') %}{% for tool in tools %}{% set ns.data = ns.data + (tool | tojson(ensure_ascii=False)) + '
|
| 2 |
+
' %}{% endfor %}{% set tool_schemas_var = ns.data %}# Tools
|
| 3 |
+
You may call one or more tools to assist with the user query. You are provided with tool schemas within <tools></tools> XML tags: <tools>{{ tool_schemas_var }}</tools> When making tool calls, use XML format to invoke tools and pass parameters: <|tool_calls_begin|>
|
| 4 |
+
<|tool_call_begin|>
|
| 5 |
+
function<|tool_sep|><steptml:invoke name="tool_name0"><steptml:parameter name="parameter_name0">[parameter value]</steptml:parameter>...</steptml:invoke><|tool_call_end|>
|
| 6 |
+
<|tool_call_begin|>
|
| 7 |
+
function<|tool_sep|><steptml:invoke name="tool_name1"><steptml:parameter name="parameter_name1">[parameter value]</steptml:parameter>...</steptml:invoke><|tool_call_end|>
|
| 8 |
+
<|tool_calls_end|>
|
| 9 |
+
Note: * You can invoke one or more tools in parallel. * Each tool call must be complete and self-contained within a single <steptml:toolcall></steptml:toolcall> block. {% endif %}{% for message in messages %}{% if message.role == 'tool_description' %}{{ render_content(message['content']) }}{% elif message.role == 'user' %}{{- '<|BOT|>' + message.role + '\n' + render_content(message['content']) }}{{- '<|EOT|>' }}{% elif message.role == 'tool_response' %}<|tool_outputs_begin|>
|
| 10 |
+
{% for tool_output in message['content'] %}<|tool_output_begin|>
|
| 11 |
+
{{ render_content(tool_output) }}<|tool_output_end|>{% endfor %}
|
| 12 |
+
<|tool_outputs_end|>
|
| 13 |
+
{% else %}{{- '<|BOT|>' + message.role + '
|
| 14 |
+
' }}{% if message['content'] is defined %}{{- render_content(message['content']) }}{% endif %}{% if message.tool_calls is defined %}<|tool_calls_begin|>
|
| 15 |
+
{% for tool in message.tool_calls %}<|tool_call_begin>|>
|
| 16 |
+
{{ tool['type'] }}<|tool_sep|>{{- '<steptml:invoke name="' + tool['function']['name'] + '">' }}{% for name, param in tool['function']['arguments'].items() %} {{- '<steptml:parameter name="' + name + '">' + param | string + '</steptml:parameter>' }}{% endfor %}</steptml:invoke><|tool_call_end|>
|
| 17 |
+
{% endfor %}<|tool_calls_end|>
|
| 18 |
+
{% endif %}<|EOT|>{% endif %}{% endfor %}{% if add_generation_prompt %}{{- '<|BOT|>assistant
|
| 19 |
+
<think>
|
| 20 |
+
' }}{% endif %}
|
config.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Step3VLForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "stepfun-ai/step3--configuration_step3.Step3VLConfig",
|
| 7 |
+
"AutoModelForCausalLM": "stepfun-ai/step3--modeling_step3.Step3vForConditionalGeneration"
|
| 8 |
+
},
|
| 9 |
+
"bos_token_id": 0,
|
| 10 |
+
"eos_token_id": 128805,
|
| 11 |
+
"hidden_size": 32,
|
| 12 |
+
"im_end_token": "<im_end>",
|
| 13 |
+
"im_patch_token": "<im_patch>",
|
| 14 |
+
"im_start_token": "<im_start>",
|
| 15 |
+
"image_token_id": 128001,
|
| 16 |
+
"image_token_len": 169,
|
| 17 |
+
"model_type": "step3_vl",
|
| 18 |
+
"patch_token_len": 81,
|
| 19 |
+
"projector_bias": false,
|
| 20 |
+
"text_config": {
|
| 21 |
+
"architectures": [
|
| 22 |
+
"Step3TextForCausalLM"
|
| 23 |
+
],
|
| 24 |
+
"head_dim": 256,
|
| 25 |
+
"hidden_size": 32,
|
| 26 |
+
"intermediate_size": 64,
|
| 27 |
+
"max_position_embedding": 65536,
|
| 28 |
+
"max_seq_len": 65536,
|
| 29 |
+
"model_type": "step3_text",
|
| 30 |
+
"moe_intermediate_size": 64,
|
| 31 |
+
"moe_layers_enum": "1",
|
| 32 |
+
"moe_num_experts": 8,
|
| 33 |
+
"moe_top_k": 3,
|
| 34 |
+
"norm_expert_weight": false,
|
| 35 |
+
"num_attention_groups": 1,
|
| 36 |
+
"num_attention_heads": 2,
|
| 37 |
+
"num_hidden_layers": 2,
|
| 38 |
+
"rms_norm_eps": 1e-05,
|
| 39 |
+
"rope_scaling": null,
|
| 40 |
+
"rope_theta": 500000,
|
| 41 |
+
"share_expert_dim": 64,
|
| 42 |
+
"share_q_dim": 512,
|
| 43 |
+
"torch_dtype": "bfloat16",
|
| 44 |
+
"vocab_size": 128815
|
| 45 |
+
},
|
| 46 |
+
"torch_dtype": "bfloat16",
|
| 47 |
+
"transformers_version": "4.54.1",
|
| 48 |
+
"understand_projector_stride": 2,
|
| 49 |
+
"vision_config": {
|
| 50 |
+
"hidden_act": "quick_gelu",
|
| 51 |
+
"hidden_size": 64,
|
| 52 |
+
"image_size": 728,
|
| 53 |
+
"intermediate_size": 128,
|
| 54 |
+
"layer_norm_eps": 1e-05,
|
| 55 |
+
"model_type": "step3_vision_encoder",
|
| 56 |
+
"num_attention_heads": 2,
|
| 57 |
+
"num_channels": 3,
|
| 58 |
+
"num_hidden_layers": 2,
|
| 59 |
+
"output_hidden_size": 64,
|
| 60 |
+
"patch_size": 14
|
| 61 |
+
}
|
| 62 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 0,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": 128805,
|
| 5 |
+
"temperature": 0.7,
|
| 6 |
+
"top_p": 0.95,
|
| 7 |
+
"transformers_version": "4.54.1",
|
| 8 |
+
"trust_remote_code": true
|
| 9 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6e46470c9bafefcc89fb8189e085a3496f3500d9f7b873cef07f64b3e76c0fab
|
| 3 |
+
size 18610672
|
processor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "stepfun-ai/step3--processing_step3.Step3VLProcessor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "Step3VLProcessor"
|
| 6 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|begin▁of▁sentence|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|EOT|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|end▁of▁sentence|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|