--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - deepseek-ai/DeepSeek-V3.1 --- This tiny model is for debugging. It is randomly initialized with the config adapted from [deepseek-ai/DeepSeek-V3.1](https://huggingface.co/deepseek-ai/DeepSeek-V3.1). ### Example usage: - vLLM ```bash python -m vllm.entrypoints.openai.api_server \ --tensor-parallel-size 2 \ --model tiny-random/deepseek-v3.1 \ --trust-remote-code \ --speculative-config='{"method": "deepseek_mtp", "num_speculative_tokens": 1}' ``` - Transformers ```python import torch import transformers model_id = "tiny-random/deepseek-v3.1" pipe = transformers.pipelines.pipeline( 'text-generation', model=model_id, trust_remote_code=True, device_map='cuda', torch_dtype=torch.bfloat16, ) r = pipe.model(torch.tensor([[1, 2, 3]], dtype=torch.int64).cuda(), attention_mask=None, use_cache=False) print(r) ``` ### Codes to create this repo: ```python import json from copy import deepcopy from pathlib import Path import accelerate import torch import torch.nn as nn from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig, set_seed, ) from transformers.models.glm4_moe.modeling_glm4_moe import Glm4MoeRMSNorm source_model_id = "deepseek-ai/DeepSeek-V3.1" save_folder = "/tmp/tiny-random/deepseek-v3.1" Path(save_folder).mkdir(parents=True, exist_ok=True) tokenizer = AutoTokenizer.from_pretrained(source_model_id, trust_remote_code=True) tokenizer.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model', cache_dir='/tmp/'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json.update({ 'first_k_dense_replace': 1, 'num_hidden_layers': 2, 'hidden_size': 8, 'intermediate_size': 64, 'kv_lora_rank': 384, 'moe_intermediate_size': 64, 'n_routed_experts': 32, 'n_shared_experts': 1, 'num_attention_heads': 4, 'num_experts_per_tok': 8, 'num_key_value_heads': 4, 'q_lora_rank': 32, 'qk_nope_head_dim': 64, 'qk_rope_head_dim': 192, # vllm mla kernel supports 576 only, FA supports head dim <= 256 'v_head_dim': 64, 'tie_word_embeddings': False, }) del config_json['quantization_config'] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) class SharedHead(nn.Module): def __init__(self, config) -> None: super().__init__() from transformers.models.glm4_moe.modeling_glm4_moe import Glm4MoeRMSNorm self.norm = Glm4MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) last_extra_layer = model.model.layers[0].__class__(config, layer_idx=config.num_hidden_layers) last_extra_layer.enorm = Glm4MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) last_extra_layer.hnorm = Glm4MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) last_extra_layer.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False) last_extra_layer.shared_head = SharedHead(config=config) model.model.layers.append(last_extra_layer) torch.set_default_dtype(torch.float32) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) last_extra_layer.shared_head.head = deepcopy(model.get_output_embeddings()) last_extra_layer.embed_tokens = deepcopy(model.get_input_embeddings()) model.save_pretrained(save_folder) with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: config_json = json.load(f) config_json['auto_map'] = {k: v.split('--')[-1] for k, v in config_json['auto_map'].items()} with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) hf_hub_download(source_model_id, filename='modeling_deepseek.py', repo_type='model', local_dir=save_folder, local_dir_use_symlinks=False, cache_dir='/tmp/') with open(f'{save_folder}/modeling_deepseek.py', 'r', encoding='utf-8') as f: codes = f.read() codes = codes.replace( "past_length = past_key_values.seen_tokens", "past_length = past_key_values.seen_tokens if hasattr(past_key_values, 'seen_tokens') else past_key_values.get_seq_length() # fix cache api deprecation" ) codes = codes.replace( "max_cache_length = past_key_values.get_max_length()", "max_cache_length = past_key_values.get_max_length() if hasattr(past_key_values, 'get_max_length') else past_key_values.get_max_cache_shape() # fix cache api deprecation" ) codes = codes.replace( "past_key_value.get_usable_length(", "getattr(past_key_value, 'get_usable_length', lambda *args, **kwargs: past_key_value.get_seq_length())(" ) codes = codes.replace( "past_key_values.get_usable_length(", "getattr(past_key_values, 'get_usable_length', lambda *args, **kwargs: past_key_values.get_seq_length())(" ) with open(f'{save_folder}/modeling_deepseek.py', 'w', encoding='utf-8') as f: f.write(codes) ``` ### Printing the model: ```text DeepseekV3ForCausalLM( (model): DeepseekV3Model( (embed_tokens): Embedding(129280, 8) (layers): ModuleList( (0): DeepseekV3DecoderLayer( (self_attn): DeepseekV3Attention( (q_a_proj): Linear(in_features=8, out_features=32, bias=False) (q_a_layernorm): DeepseekV3RMSNorm() (q_b_proj): Linear(in_features=32, out_features=1024, bias=False) (kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) (kv_a_layernorm): DeepseekV3RMSNorm() (kv_b_proj): Linear(in_features=384, out_features=512, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) (rotary_emb): DeepseekV3YarnRotaryEmbedding() ) (mlp): DeepseekV3MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) (input_layernorm): DeepseekV3RMSNorm() (post_attention_layernorm): DeepseekV3RMSNorm() ) (1): DeepseekV3DecoderLayer( (self_attn): DeepseekV3Attention( (q_a_proj): Linear(in_features=8, out_features=32, bias=False) (q_a_layernorm): DeepseekV3RMSNorm() (q_b_proj): Linear(in_features=32, out_features=1024, bias=False) (kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) (kv_a_layernorm): DeepseekV3RMSNorm() (kv_b_proj): Linear(in_features=384, out_features=512, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) (rotary_emb): DeepseekV3YarnRotaryEmbedding() ) (mlp): DeepseekV3MoE( (experts): ModuleList( (0-31): 32 x DeepseekV3MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) (gate): MoEGate() (shared_experts): DeepseekV3MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) (input_layernorm): DeepseekV3RMSNorm() (post_attention_layernorm): DeepseekV3RMSNorm() ) (2): DeepseekV3DecoderLayer( (self_attn): DeepseekV3Attention( (q_a_proj): Linear(in_features=8, out_features=32, bias=False) (q_a_layernorm): DeepseekV3RMSNorm() (q_b_proj): Linear(in_features=32, out_features=1024, bias=False) (kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) (kv_a_layernorm): DeepseekV3RMSNorm() (kv_b_proj): Linear(in_features=384, out_features=512, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) (rotary_emb): DeepseekV3YarnRotaryEmbedding() ) (mlp): DeepseekV3MoE( (experts): ModuleList( (0-31): 32 x DeepseekV3MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) (gate): MoEGate() (shared_experts): DeepseekV3MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) (input_layernorm): DeepseekV3RMSNorm() (post_attention_layernorm): DeepseekV3RMSNorm() (enorm): Glm4MoeRMSNorm((8,), eps=1e-06) (hnorm): Glm4MoeRMSNorm((8,), eps=1e-06) (eh_proj): Linear(in_features=16, out_features=8, bias=False) (shared_head): SharedHead( (norm): Glm4MoeRMSNorm((8,), eps=1e-06) (head): Linear(in_features=8, out_features=129280, bias=False) ) (embed_tokens): Embedding(129280, 8) ) ) (norm): DeepseekV3RMSNorm() ) (lm_head): Linear(in_features=8, out_features=129280, bias=False) ) ```