Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- deepseek-ai/DeepSeek-V3
|
4 |
+
---
|
5 |
+
This is the first 4 layers of DeepSeek-V3 with GPTQ quantization style.
|
6 |
+
- Layer 4's routed experts are quantized to 2-bit
|
7 |
+
- All other Linear layers are quantized to 4-bit (including MLA, dense layer ffn, and shared expert)
|
8 |
+
|
9 |
+
To load and run this model:
|
10 |
+
```python
|
11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
12 |
+
from gptqmodel import GPTQModel, QuantizeConfig, get_best_device
|
13 |
+
|
14 |
+
pretrained_model_id = "/root/dataDisk/DeepSeek-V3-bf16-4layers"
|
15 |
+
quantized_model_id = = "/root/dataDisk/DeepSeek-V3-4bit-4layers"
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_id, use_fast=True)
|
18 |
+
device = get_best_device()
|
19 |
+
model = GPTQModel.load(quantized_model_id, device=device, trust_remote_code=True)
|
20 |
+
print(tokenizer.decode(model.generate(**tokenizer("gptqmodel is", return_tensors="pt").to(model.device), max_new_tokens=10)[0]))
|
21 |
+
```
|