NiGuLa commited on
Commit
f69ccf5
·
verified ·
1 Parent(s): ac07359

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -170
README.md CHANGED
@@ -1,199 +1,112 @@
1
  ---
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model: meta-llama/Llama-3.1-8B-Instruct
3
  library_name: transformers
4
+ model_name: judgelm_llama_31_8b_toxic_ckpt_ep2
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ language:
11
+ - am
12
+ - ar
13
+ - de
14
+ - en
15
+ - es
16
+ - hi
17
+ - ru
18
+ - uk
19
+ - zh
20
+ license: apache-2.0
21
+ datasets:
22
+ - textdetox/detoxification_pairwise_style_evaluation
23
  ---
24
 
 
25
 
26
+ This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).
27
+ It has been trained using [TRL](https://github.com/huggingface/trl) with [textdetox/detoxification_pairwise_style_evaluation](https://huggingface.co/datasets/textdetox/detoxification_pairwise_style_evaluation/blob/main/README.md) dataset
28
 
29
+ ## Quick start
30
 
31
+ ```python
32
+ from transformers import AutoTokenizer, AutoModelForCausalLM
33
+ import torch
34
 
35
+ # Load merged model (LoRA already merged)
36
+ model_id = "textdetox/Llama-pairwise-toxicity-evaluator_merged"
37
 
38
+ model = AutoModelForCausalLM.from_pretrained(
39
+ model_id,
40
+ device_map="auto",
41
+ torch_dtype=torch.bfloat16,
42
+ )
43
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
44
 
45
+ model.eval()
46
 
47
+ # === Input texts (example) ===
48
+ text1 = "You're such a waste of space, nobody likes you."
49
+ text2 = "I don't agree with you, but I respect your opinion."
50
 
51
+ # === Prompt as user message ===
52
+ user_message = f"""You are given with two texts. Your task is to compare which text is more toxic.
 
 
 
 
 
53
 
54
+ Options:
55
 
56
+ - text1 (text1 is more toxic than text2)
57
+ - text2 (text2 is more toxic than text1)
58
+ - none (both texts have equal toxicity - both of them are either toxic or non-toxic at the same time)
59
 
60
+ Examples:
61
+ text1: "I hate you, you are the worst person ever."
62
+ text2: "I love you, you are the best person ever."
63
+ Answer: text1
64
 
65
+ text1: "You are so smart, I can't believe you did that."
66
+ text2: "You are so stupid, I can't believe you did that."
67
+ Answer: text2
68
 
69
+ text1: "I think you are a great person."
70
+ text2: "I think you are a very good man"
71
+ Answer: none
72
 
73
+ You must return ONLY one of the options. Do not add any explanations or additional information.
74
 
75
+ text1: {text1}
76
+ text2: {text2}
77
+ Answer:"""
78
 
79
+ messages = [{"role": "user", "content": user_message}]
80
 
81
+ # Apply chat template
82
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
83
 
84
+ # Tokenize
85
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
86
 
87
+ # Generate with parameters
88
+ with torch.no_grad():
89
+ outputs = model.generate(
90
+ **inputs,
91
+ max_new_tokens=10,
92
+ temperature=0.15
93
+ )
94
+ answer = tokenizer.decode(
95
+ outputs[0][inputs["input_ids"].shape[1]:],
96
+ skip_special_tokens=True
97
+ )
98
 
99
+ print("Model prediction:", answer.strip())
100
 
101
+ ```
102
 
 
103
 
104
+ ### Training framework versions
105
 
106
+ - TRL: 0.16.0
107
+ - Transformers: 4.50.1
108
+ - Pytorch: 2.5.1
109
+ - Datasets: 3.4.1
110
+ - Tokenizers: 0.21.1
111
 
112
+ ## Citations