Commit
·
efdbf66
1
Parent(s):
8f7e883
🦋 Update README
Browse files
README.md
CHANGED
|
@@ -5,6 +5,83 @@ tags:
|
|
| 5 |
- text-to-speech
|
| 6 |
- text-to-mel
|
| 7 |
language: en
|
|
|
|
|
|
|
|
|
|
| 8 |
widget:
|
| 9 |
- text: "Hello, how are you doing?"
|
| 10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
- text-to-speech
|
| 6 |
- text-to-mel
|
| 7 |
language: en
|
| 8 |
+
license: apache-2.0
|
| 9 |
+
datasets:
|
| 10 |
+
- ljspeech
|
| 11 |
widget:
|
| 12 |
- text: "Hello, how are you doing?"
|
| 13 |
---
|
| 14 |
+
|
| 15 |
+
# Tacotron 2 with Guided Attention trained on LJSpeech (En)
|
| 16 |
+
This repository provides a pretrained [Tacotron2](https://arxiv.org/abs/1712.05884) trained with [Guided Attention](https://arxiv.org/abs/1710.08969) on LJSpeech dataset (Eng). For a detail of the model, we encourage you to read more about
|
| 17 |
+
[TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS).
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
## Install TensorFlowTTS
|
| 21 |
+
First of all, please install SpeechBrain with the following command:
|
| 22 |
+
```
|
| 23 |
+
pip install TensorFlowTTS
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
### Converting your Text to Mel Spectrogram
|
| 27 |
+
```python
|
| 28 |
+
from tensorflow_tts.inference import AutoProcessor
|
| 29 |
+
from tensorflow_tts.inference import TFAutoModel
|
| 30 |
+
|
| 31 |
+
ljspeech_processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en")
|
| 32 |
+
tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en")
|
| 33 |
+
|
| 34 |
+
text = "This is a demo to show how to use our model to generate mel spectrogram from raw text."
|
| 35 |
+
|
| 36 |
+
input_ids = processor.text_to_sequence(text)
|
| 37 |
+
|
| 38 |
+
decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference(
|
| 39 |
+
input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
|
| 40 |
+
input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32),
|
| 41 |
+
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
#### Referencing Tacotron 2
|
| 47 |
+
```
|
| 48 |
+
@article{DBLP:journals/corr/abs-1712-05884,
|
| 49 |
+
author = {Jonathan Shen and
|
| 50 |
+
Ruoming Pang and
|
| 51 |
+
Ron J. Weiss and
|
| 52 |
+
Mike Schuster and
|
| 53 |
+
Navdeep Jaitly and
|
| 54 |
+
Zongheng Yang and
|
| 55 |
+
Zhifeng Chen and
|
| 56 |
+
Yu Zhang and
|
| 57 |
+
Yuxuan Wang and
|
| 58 |
+
R. J. Skerry{-}Ryan and
|
| 59 |
+
Rif A. Saurous and
|
| 60 |
+
Yannis Agiomyrgiannakis and
|
| 61 |
+
Yonghui Wu},
|
| 62 |
+
title = {Natural {TTS} Synthesis by Conditioning WaveNet on Mel Spectrogram
|
| 63 |
+
Predictions},
|
| 64 |
+
journal = {CoRR},
|
| 65 |
+
volume = {abs/1712.05884},
|
| 66 |
+
year = {2017},
|
| 67 |
+
url = {http://arxiv.org/abs/1712.05884},
|
| 68 |
+
archivePrefix = {arXiv},
|
| 69 |
+
eprint = {1712.05884},
|
| 70 |
+
timestamp = {Thu, 28 Nov 2019 08:59:52 +0100},
|
| 71 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-1712-05884.bib},
|
| 72 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 73 |
+
}
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
#### Referencing TensorFlowTTS
|
| 77 |
+
```
|
| 78 |
+
@misc{TFTTS,
|
| 79 |
+
author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata,
|
| 80 |
+
Trinh Le and Yunchao He},
|
| 81 |
+
title = {TensorflowTTS},
|
| 82 |
+
year = {2020},
|
| 83 |
+
publisher = {GitHub},
|
| 84 |
+
journal = {GitHub repository},
|
| 85 |
+
howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}},
|
| 86 |
+
}
|
| 87 |
+
```
|