Update README.md
Browse files
README.md
CHANGED
@@ -9,6 +9,100 @@ tags:
|
|
9 |
- English
|
10 |
- text-generation
|
11 |
- base-model
|
|
|
|
|
|
|
12 |
datasets:
|
13 |
- tiiuae/falcon-refinedweb
|
14 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
- English
|
10 |
- text-generation
|
11 |
- base-model
|
12 |
+
- bittensor
|
13 |
+
- decentralized AI
|
14 |
+
- Web3
|
15 |
datasets:
|
16 |
- tiiuae/falcon-refinedweb
|
17 |
---
|
18 |
+
|
19 |
+
# 🏯 Sumo-Qyuu-7B-v0.1
|
20 |
+
|
21 |
+
Sumo is a family of models developed by [Tensorplex](https://tensorplex.ai). Specifically, "Sumo-Qyuu" stands for the best model developed for the bittensor subnet 9.
|
22 |
+
|
23 |
+
## Model Details
|
24 |
+
|
25 |
+
### Model Description
|
26 |
+
|
27 |
+
- **Developed by:** [Tensorplex Labs](https://tensorplex.ai)
|
28 |
+
- **Model type:** Pretrained Foundational Language Model
|
29 |
+
- **Language(s) (NLP):** Primarily English
|
30 |
+
- **License:** MIT
|
31 |
+
|
32 |
+
### Model Sources
|
33 |
+
|
34 |
+
- **Bittensor Subnet9 Leaderboard:** [https://huggingface.co/spaces/RaoFoundation/pretraining-leaderboard](https://huggingface.co/spaces/RaoFoundation/pretraining-leaderboard)
|
35 |
+
- **Bittensor Subnet9 Repository:** [https://github.com/RaoFoundation/pretraining/tree/main](https://github.com/RaoFoundation/pretraining/tree/main)
|
36 |
+
|
37 |
+
## Usage
|
38 |
+
|
39 |
+
⛔ **This is a pretrained base model, which hasn't been aligned yet. Use with caution or finetune further on downstream tasks before deployment.**
|
40 |
+
|
41 |
+
## How to Get Started with the Model
|
42 |
+
|
43 |
+
Use the code below to get started with the model.
|
44 |
+
|
45 |
+
```python
|
46 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
47 |
+
import transformers
|
48 |
+
import torch
|
49 |
+
|
50 |
+
model = "tensorplex-labs/Sumo-Qyuu-7B-v0.1"
|
51 |
+
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
53 |
+
pipeline = transformers.pipeline(
|
54 |
+
"text-generation",
|
55 |
+
model=model,
|
56 |
+
tokenizer=tokenizer,
|
57 |
+
torch_dtype=torch.bfloat16,
|
58 |
+
)
|
59 |
+
sequences = pipeline(
|
60 |
+
"Tell me about decentralization.",
|
61 |
+
max_length=256,
|
62 |
+
do_sample=True,
|
63 |
+
temperature=0.6,
|
64 |
+
top_p=0.9,
|
65 |
+
num_return_sequences=1,
|
66 |
+
eos_token_id=tokenizer.eos_token_id,
|
67 |
+
bos_token_id=tokenizer.bos_token_id,
|
68 |
+
)
|
69 |
+
for seq in sequences:
|
70 |
+
print(f"Result: {seq['generated_text']}")
|
71 |
+
|
72 |
+
```
|
73 |
+
|
74 |
+
## Training Details
|
75 |
+
|
76 |
+
### Training Data
|
77 |
+
|
78 |
+
This model has been trained with [tiiuae/falcon-refinedweb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) dataset.
|
79 |
+
|
80 |
+
## Evaluation
|
81 |
+
|
82 |
+
| | tensorplex-labs/Sumo-Qyuu-7B-v0.1 | NousResearch/Llama-2-7b-hf | yahma/llama-7b-hf | tiiuae/falcon-7b |
|
83 |
+
|----------------------------------|----------------------------------------|------------------------------|---------------------|--------------------|
|
84 |
+
| **avg** | **47.85** | 47.31 | 44.22 | 42.03 |
|
85 |
+
| arc_challenge (acc_norm, 0-shot) | 47.53 | 46.16 | 44.88 | 43.43 |
|
86 |
+
| gsm8k (exact_match, 5-shot) | 10.46 | 13.27 | 10.39 | 05.23 |
|
87 |
+
| hellaswag (acc_norm, 0-shot) | 76.66 | 75.97 | 76.19 | 76.33 |
|
88 |
+
| mmlu (acc, 0-shot) | 44.26 | 40.78 | 29.68 | 25.72 |
|
89 |
+
| truthfulqa_mc2 (acc, 0-shot) | 37.29 | 39.00 | 34.01 | 34.27 |
|
90 |
+
| winogrande (acc, 0-shot) | 70.88 | 68.67 | 70.17 | 67.17 |
|
91 |
+
|
92 |
+
[LM Evaluation Harness Repository](https://github.com/EleutherAI/lm-evaluation-harness)
|
93 |
+
|
94 |
+
|
95 |
+
## Model Architecture and Objective
|
96 |
+
|
97 |
+
The model is a 6.9B parameter model based on `LlamaForCausalLM` architecture, with larger vocab size (100k) that matches with the gpt-4 tokenizer.
|
98 |
+
The training objective was the standard next token prediction.
|
99 |
+
|
100 |
+
## Model Card Authors
|
101 |
+
|
102 | |
103 |
+
|
104 |
+
## Model Card Contact
|
105 |
+
|
106 |
+
Should you have any inquiries, contact [email protected].
|
107 |
+
|
108 |
+
|