Upload hunyuan3d-paintpbr-v2-1/model.py with huggingface_hub
Browse files- hunyuan3d-paintpbr-v2-1/model.py +622 -0
hunyuan3d-paintpbr-v2-1/model.py
ADDED
|
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
| 2 |
+
# except for the third-party components listed below.
|
| 3 |
+
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
| 4 |
+
# in the repsective licenses of these third-party components.
|
| 5 |
+
# Users must comply with all terms and conditions of original licenses of these third-party
|
| 6 |
+
# components and must ensure that the usage of the third party components adheres to
|
| 7 |
+
# all relevant laws and regulations.
|
| 8 |
+
|
| 9 |
+
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
| 10 |
+
# their software and algorithms, including trained model weights, parameters (including
|
| 11 |
+
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
| 12 |
+
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
| 13 |
+
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
|
| 17 |
+
# import ipdb
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
import pytorch_lightning as pl
|
| 23 |
+
from tqdm import tqdm
|
| 24 |
+
from torchvision.transforms import v2
|
| 25 |
+
from torchvision.utils import make_grid, save_image
|
| 26 |
+
from einops import rearrange
|
| 27 |
+
|
| 28 |
+
from diffusers import (
|
| 29 |
+
DiffusionPipeline,
|
| 30 |
+
EulerAncestralDiscreteScheduler,
|
| 31 |
+
DDPMScheduler,
|
| 32 |
+
UNet2DConditionModel,
|
| 33 |
+
ControlNetModel,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
from .modules import Dino_v2, UNet2p5DConditionModel
|
| 37 |
+
import math
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def extract_into_tensor(a, t, x_shape):
|
| 41 |
+
b, *_ = t.shape
|
| 42 |
+
out = a.gather(-1, t)
|
| 43 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class HunyuanPaint(pl.LightningModule):
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
stable_diffusion_config,
|
| 50 |
+
control_net_config=None,
|
| 51 |
+
num_view=6,
|
| 52 |
+
view_size=320,
|
| 53 |
+
drop_cond_prob=0.1,
|
| 54 |
+
with_normal_map=None,
|
| 55 |
+
with_position_map=None,
|
| 56 |
+
pbr_settings=["albedo", "mr"],
|
| 57 |
+
**kwargs,
|
| 58 |
+
):
|
| 59 |
+
"""Initializes the HunyuanPaint Lightning Module.
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
stable_diffusion_config: Configuration for loading the Stable Diffusion pipeline
|
| 63 |
+
control_net_config: Configuration for ControlNet (optional)
|
| 64 |
+
num_view: Number of views to process
|
| 65 |
+
view_size: Size of input views (height/width)
|
| 66 |
+
drop_cond_prob: Probability of dropping conditioning input during training
|
| 67 |
+
with_normal_map: Flag indicating whether normal maps are used
|
| 68 |
+
with_position_map: Flag indicating whether position maps are used
|
| 69 |
+
pbr_settings: List of PBR materials to generate (e.g., albedo, metallic-roughness)
|
| 70 |
+
**kwargs: Additional keyword arguments
|
| 71 |
+
"""
|
| 72 |
+
super(HunyuanPaint, self).__init__()
|
| 73 |
+
|
| 74 |
+
self.num_view = num_view
|
| 75 |
+
self.view_size = view_size
|
| 76 |
+
self.drop_cond_prob = drop_cond_prob
|
| 77 |
+
self.pbr_settings = pbr_settings
|
| 78 |
+
|
| 79 |
+
# init modules
|
| 80 |
+
pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config)
|
| 81 |
+
pipeline.set_pbr_settings(self.pbr_settings)
|
| 82 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 83 |
+
pipeline.scheduler.config, timestep_spacing="trailing"
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
self.with_normal_map = with_normal_map
|
| 87 |
+
self.with_position_map = with_position_map
|
| 88 |
+
|
| 89 |
+
self.pipeline = pipeline
|
| 90 |
+
|
| 91 |
+
self.pipeline.vae.use_slicing = True
|
| 92 |
+
|
| 93 |
+
train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config)
|
| 94 |
+
|
| 95 |
+
if isinstance(self.pipeline.unet, UNet2DConditionModel):
|
| 96 |
+
self.pipeline.unet = UNet2p5DConditionModel(
|
| 97 |
+
self.pipeline.unet, train_sched, self.pipeline.scheduler, self.pbr_settings
|
| 98 |
+
)
|
| 99 |
+
self.train_scheduler = train_sched # use ddpm scheduler during training
|
| 100 |
+
|
| 101 |
+
self.register_schedule()
|
| 102 |
+
|
| 103 |
+
pipeline.set_learned_parameters()
|
| 104 |
+
|
| 105 |
+
if control_net_config is not None:
|
| 106 |
+
pipeline.unet = pipeline.unet.bfloat16().requires_grad_(control_net_config.train_unet)
|
| 107 |
+
self.pipeline.add_controlnet(
|
| 108 |
+
ControlNetModel.from_pretrained(control_net_config.pretrained_model_name_or_path),
|
| 109 |
+
conditioning_scale=0.75,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
self.unet = pipeline.unet
|
| 113 |
+
|
| 114 |
+
self.pipeline.set_progress_bar_config(disable=True)
|
| 115 |
+
self.pipeline.vae = self.pipeline.vae.bfloat16()
|
| 116 |
+
self.pipeline.text_encoder = self.pipeline.text_encoder.bfloat16()
|
| 117 |
+
|
| 118 |
+
if self.unet.use_dino:
|
| 119 |
+
self.dino_v2 = Dino_v2("facebook/dinov2-giant")
|
| 120 |
+
self.dino_v2 = self.dino_v2.bfloat16()
|
| 121 |
+
|
| 122 |
+
self.validation_step_outputs = []
|
| 123 |
+
|
| 124 |
+
def register_schedule(self):
|
| 125 |
+
|
| 126 |
+
self.num_timesteps = self.train_scheduler.config.num_train_timesteps
|
| 127 |
+
|
| 128 |
+
betas = self.train_scheduler.betas.detach().cpu()
|
| 129 |
+
|
| 130 |
+
alphas = 1.0 - betas
|
| 131 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
| 132 |
+
alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0)
|
| 133 |
+
|
| 134 |
+
self.register_buffer("betas", betas.float())
|
| 135 |
+
self.register_buffer("alphas_cumprod", alphas_cumprod.float())
|
| 136 |
+
self.register_buffer("alphas_cumprod_prev", alphas_cumprod_prev.float())
|
| 137 |
+
|
| 138 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 139 |
+
self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float())
|
| 140 |
+
self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float())
|
| 141 |
+
|
| 142 |
+
self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod).float())
|
| 143 |
+
self.register_buffer("sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1).float())
|
| 144 |
+
|
| 145 |
+
def on_fit_start(self):
|
| 146 |
+
device = torch.device(f"cuda:{self.local_rank}")
|
| 147 |
+
self.pipeline.to(device)
|
| 148 |
+
if self.global_rank == 0:
|
| 149 |
+
os.makedirs(os.path.join(self.logdir, "images_val"), exist_ok=True)
|
| 150 |
+
|
| 151 |
+
def prepare_batch_data(self, batch):
|
| 152 |
+
"""Preprocesses a batch of input data for training/inference.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
batch: Raw input batch dictionary
|
| 156 |
+
|
| 157 |
+
Returns:
|
| 158 |
+
tuple: Contains:
|
| 159 |
+
- cond_imgs: Primary conditioning images (B, 1, C, H, W)
|
| 160 |
+
- cond_imgs_another: Secondary conditioning images (B, 1, C, H, W)
|
| 161 |
+
- target_imgs: Dictionary of target PBR images resized and clamped
|
| 162 |
+
- images_normal: Preprocessed normal maps (if available)
|
| 163 |
+
- images_position: Preprocessed position maps (if available)
|
| 164 |
+
"""
|
| 165 |
+
|
| 166 |
+
images_cond = batch["images_cond"].to(self.device) # (B, M, C, H, W), where M is the number of reference images
|
| 167 |
+
cond_imgs, cond_imgs_another = images_cond[:, 0:1, ...], images_cond[:, 1:2, ...]
|
| 168 |
+
|
| 169 |
+
cond_size = self.view_size
|
| 170 |
+
cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1)
|
| 171 |
+
cond_imgs_another = v2.functional.resize(cond_imgs_another, cond_size, interpolation=3, antialias=True).clamp(
|
| 172 |
+
0, 1
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
target_imgs = {}
|
| 176 |
+
for pbr_token in self.pbr_settings:
|
| 177 |
+
target_imgs[pbr_token] = batch[f"images_{pbr_token}"].to(self.device)
|
| 178 |
+
target_imgs[pbr_token] = v2.functional.resize(
|
| 179 |
+
target_imgs[pbr_token], self.view_size, interpolation=3, antialias=True
|
| 180 |
+
).clamp(0, 1)
|
| 181 |
+
|
| 182 |
+
images_normal = None
|
| 183 |
+
if "images_normal" in batch:
|
| 184 |
+
images_normal = batch["images_normal"] # (B, N, C, H, W)
|
| 185 |
+
images_normal = v2.functional.resize(images_normal, self.view_size, interpolation=3, antialias=True).clamp(
|
| 186 |
+
0, 1
|
| 187 |
+
)
|
| 188 |
+
images_normal = [images_normal]
|
| 189 |
+
|
| 190 |
+
images_position = None
|
| 191 |
+
if "images_position" in batch:
|
| 192 |
+
images_position = batch["images_position"] # (B, N, C, H, W)
|
| 193 |
+
images_position = v2.functional.resize(
|
| 194 |
+
images_position, self.view_size, interpolation=3, antialias=True
|
| 195 |
+
).clamp(0, 1)
|
| 196 |
+
images_position = [images_position]
|
| 197 |
+
|
| 198 |
+
return cond_imgs, cond_imgs_another, target_imgs, images_normal, images_position
|
| 199 |
+
|
| 200 |
+
@torch.no_grad()
|
| 201 |
+
def forward_text_encoder(self, prompts):
|
| 202 |
+
device = next(self.pipeline.vae.parameters()).device
|
| 203 |
+
text_embeds = self.pipeline.encode_prompt(prompts, device, 1, False)[0]
|
| 204 |
+
return text_embeds
|
| 205 |
+
|
| 206 |
+
@torch.no_grad()
|
| 207 |
+
def encode_images(self, images):
|
| 208 |
+
"""Encodes input images into latent representations using the VAE.
|
| 209 |
+
|
| 210 |
+
Handles both standard input (B, N, C, H, W) and PBR input (B, N_pbrs, N, C, H, W)
|
| 211 |
+
Maintains original batch structure in output latents.
|
| 212 |
+
|
| 213 |
+
Args:
|
| 214 |
+
images: Input images tensor
|
| 215 |
+
|
| 216 |
+
Returns:
|
| 217 |
+
torch.Tensor: Latent representations with original batch dimensions preserved
|
| 218 |
+
"""
|
| 219 |
+
|
| 220 |
+
B = images.shape[0]
|
| 221 |
+
image_ndims = images.ndim
|
| 222 |
+
if image_ndims != 5:
|
| 223 |
+
N_pbrs, N = images.shape[1:3]
|
| 224 |
+
images = (
|
| 225 |
+
rearrange(images, "b n c h w -> (b n) c h w")
|
| 226 |
+
if image_ndims == 5
|
| 227 |
+
else rearrange(images, "b n_pbrs n c h w -> (b n_pbrs n) c h w")
|
| 228 |
+
)
|
| 229 |
+
dtype = next(self.pipeline.vae.parameters()).dtype
|
| 230 |
+
|
| 231 |
+
images = (images - 0.5) * 2.0
|
| 232 |
+
posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist
|
| 233 |
+
latents = posterior.sample() * self.pipeline.vae.config.scaling_factor
|
| 234 |
+
|
| 235 |
+
latents = (
|
| 236 |
+
rearrange(latents, "(b n) c h w -> b n c h w", b=B)
|
| 237 |
+
if image_ndims == 5
|
| 238 |
+
else rearrange(latents, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs)
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
return latents
|
| 242 |
+
|
| 243 |
+
def forward_unet(self, latents, t, **cached_condition):
|
| 244 |
+
"""Runs the UNet model to predict noise/latent residuals.
|
| 245 |
+
|
| 246 |
+
Args:
|
| 247 |
+
latents: Noisy latent representations (B, C, H, W)
|
| 248 |
+
t: Timestep tensor (B,)
|
| 249 |
+
**cached_condition: Dictionary of conditioning inputs (text embeds, reference images, etc)
|
| 250 |
+
|
| 251 |
+
Returns:
|
| 252 |
+
torch.Tensor: UNet output (predicted noise or velocity)
|
| 253 |
+
"""
|
| 254 |
+
|
| 255 |
+
dtype = next(self.unet.parameters()).dtype
|
| 256 |
+
latents = latents.to(dtype)
|
| 257 |
+
shading_embeds = cached_condition["shading_embeds"]
|
| 258 |
+
pred_noise = self.pipeline.unet(latents, t, encoder_hidden_states=shading_embeds, **cached_condition)
|
| 259 |
+
return pred_noise[0]
|
| 260 |
+
|
| 261 |
+
def predict_start_from_z_and_v(self, x_t, t, v):
|
| 262 |
+
"""
|
| 263 |
+
Predicts clean image (x0) from noisy latents (x_t) and
|
| 264 |
+
velocity prediction (v) using the v-prediction formula.
|
| 265 |
+
|
| 266 |
+
Args:
|
| 267 |
+
x_t: Noisy latents at timestep t
|
| 268 |
+
t: Current timestep
|
| 269 |
+
v: Predicted velocity (v) from UNet
|
| 270 |
+
|
| 271 |
+
Returns:
|
| 272 |
+
torch.Tensor: Predicted clean image (x0)
|
| 273 |
+
"""
|
| 274 |
+
|
| 275 |
+
return (
|
| 276 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
|
| 277 |
+
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
def get_v(self, x, noise, t):
|
| 281 |
+
"""Computes the target velocity (v) for v-prediction training.
|
| 282 |
+
|
| 283 |
+
Args:
|
| 284 |
+
x: Clean latents (x0)
|
| 285 |
+
noise: Added noise
|
| 286 |
+
t: Current timestep
|
| 287 |
+
|
| 288 |
+
Returns:
|
| 289 |
+
torch.Tensor: Target velocity
|
| 290 |
+
"""
|
| 291 |
+
|
| 292 |
+
return (
|
| 293 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
|
| 294 |
+
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
def training_step(self, batch, batch_idx):
|
| 298 |
+
"""Performs a single training step with both conditioning paths.
|
| 299 |
+
|
| 300 |
+
Implements:
|
| 301 |
+
1. Dual-conditioning path training (main ref + secondary ref)
|
| 302 |
+
2. Velocity-prediction with consistency loss
|
| 303 |
+
3. Conditional dropout for robust learning
|
| 304 |
+
4. PBR-specific losses (albedo/metallic-roughness)
|
| 305 |
+
|
| 306 |
+
Args:
|
| 307 |
+
batch: Input batch from dataloader
|
| 308 |
+
batch_idx: Index of current batch
|
| 309 |
+
|
| 310 |
+
Returns:
|
| 311 |
+
torch.Tensor: Combined loss value
|
| 312 |
+
"""
|
| 313 |
+
|
| 314 |
+
cond_imgs, cond_imgs_another, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch)
|
| 315 |
+
|
| 316 |
+
B, N_ref = cond_imgs.shape[:2]
|
| 317 |
+
_, N_gen, _, H, W = target_imgs["albedo"].shape
|
| 318 |
+
N_pbrs = len(self.pbr_settings)
|
| 319 |
+
t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device)
|
| 320 |
+
t = t.unsqueeze(-1).repeat(1, N_pbrs, N_gen)
|
| 321 |
+
t = rearrange(t, "b n_pbrs n -> (b n_pbrs n)")
|
| 322 |
+
|
| 323 |
+
all_target_pbrs = []
|
| 324 |
+
for pbr_token in self.pbr_settings:
|
| 325 |
+
all_target_pbrs.append(target_imgs[pbr_token])
|
| 326 |
+
all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0)
|
| 327 |
+
gen_latents = self.encode_images(all_target_pbrs) #! B, N_pbrs N C H W
|
| 328 |
+
ref_latents = self.encode_images(cond_imgs) #! B, M, C, H, W
|
| 329 |
+
ref_latents_another = self.encode_images(cond_imgs_another) #! B, M, C, H, W
|
| 330 |
+
|
| 331 |
+
all_shading_tokens = []
|
| 332 |
+
for token in self.pbr_settings:
|
| 333 |
+
if token in ["albedo", "mr"]:
|
| 334 |
+
all_shading_tokens.append(
|
| 335 |
+
getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(B, 1, 1)
|
| 336 |
+
)
|
| 337 |
+
shading_embeds = torch.stack(all_shading_tokens, dim=1)
|
| 338 |
+
|
| 339 |
+
if self.unet.use_dino:
|
| 340 |
+
dino_hidden_states = self.dino_v2(cond_imgs[:, :1, ...])
|
| 341 |
+
dino_hidden_states_another = self.dino_v2(cond_imgs_another[:, :1, ...])
|
| 342 |
+
|
| 343 |
+
gen_latents = rearrange(gen_latents, "b n_pbrs n c h w -> (b n_pbrs n) c h w")
|
| 344 |
+
noise = torch.randn_like(gen_latents).to(self.device)
|
| 345 |
+
latents_noisy = self.train_scheduler.add_noise(gen_latents, noise, t).to(self.device)
|
| 346 |
+
latents_noisy = rearrange(latents_noisy, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs)
|
| 347 |
+
|
| 348 |
+
cached_condition = {}
|
| 349 |
+
|
| 350 |
+
if normal_imgs is not None:
|
| 351 |
+
normal_embeds = self.encode_images(normal_imgs[0])
|
| 352 |
+
cached_condition["embeds_normal"] = normal_embeds #! B, N, C, H, W
|
| 353 |
+
|
| 354 |
+
if position_imgs is not None:
|
| 355 |
+
position_embeds = self.encode_images(position_imgs[0])
|
| 356 |
+
cached_condition["embeds_position"] = position_embeds #! B, N, C, H, W
|
| 357 |
+
cached_condition["position_maps"] = position_imgs[0] #! B, N, C, H, W
|
| 358 |
+
|
| 359 |
+
for b in range(B):
|
| 360 |
+
prob = np.random.rand()
|
| 361 |
+
if prob < self.drop_cond_prob:
|
| 362 |
+
if "normal_imgs" in cached_condition:
|
| 363 |
+
cached_condition["embeds_normal"][b, ...] = torch.zeros_like(
|
| 364 |
+
cached_condition["embeds_normal"][b, ...]
|
| 365 |
+
)
|
| 366 |
+
if "position_imgs" in cached_condition:
|
| 367 |
+
cached_condition["embeds_position"][b, ...] = torch.zeros_like(
|
| 368 |
+
cached_condition["embeds_position"][b, ...]
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
prob = np.random.rand()
|
| 372 |
+
if prob < self.drop_cond_prob:
|
| 373 |
+
if "position_maps" in cached_condition:
|
| 374 |
+
cached_condition["position_maps"][b, ...] = torch.zeros_like(
|
| 375 |
+
cached_condition["position_maps"][b, ...]
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
prob = np.random.rand()
|
| 379 |
+
if prob < self.drop_cond_prob:
|
| 380 |
+
dino_hidden_states[b, ...] = torch.zeros_like(dino_hidden_states[b, ...])
|
| 381 |
+
prob = np.random.rand()
|
| 382 |
+
if prob < self.drop_cond_prob:
|
| 383 |
+
dino_hidden_states_another[b, ...] = torch.zeros_like(dino_hidden_states_another[b, ...])
|
| 384 |
+
|
| 385 |
+
# MVA & Ref Attention
|
| 386 |
+
prob = np.random.rand()
|
| 387 |
+
cached_condition["mva_scale"] = 1.0
|
| 388 |
+
cached_condition["ref_scale"] = 1.0
|
| 389 |
+
if prob < self.drop_cond_prob:
|
| 390 |
+
cached_condition["mva_scale"] = 0.0
|
| 391 |
+
cached_condition["ref_scale"] = 0.0
|
| 392 |
+
elif prob > 1.0 - self.drop_cond_prob:
|
| 393 |
+
prob = np.random.rand()
|
| 394 |
+
if prob < 0.5:
|
| 395 |
+
cached_condition["mva_scale"] = 0.0
|
| 396 |
+
else:
|
| 397 |
+
cached_condition["ref_scale"] = 0.0
|
| 398 |
+
else:
|
| 399 |
+
pass
|
| 400 |
+
|
| 401 |
+
if self.train_scheduler.config.prediction_type == "v_prediction":
|
| 402 |
+
|
| 403 |
+
cached_condition["shading_embeds"] = shading_embeds
|
| 404 |
+
cached_condition["ref_latents"] = ref_latents
|
| 405 |
+
cached_condition["dino_hidden_states"] = dino_hidden_states
|
| 406 |
+
v_pred = self.forward_unet(latents_noisy, t, **cached_condition)
|
| 407 |
+
v_pred_albedo, v_pred_mr = torch.split(
|
| 408 |
+
rearrange(
|
| 409 |
+
v_pred, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
|
| 410 |
+
),
|
| 411 |
+
1,
|
| 412 |
+
dim=1,
|
| 413 |
+
)
|
| 414 |
+
v_target = self.get_v(gen_latents, noise, t)
|
| 415 |
+
v_target_albedo, v_target_mr = torch.split(
|
| 416 |
+
rearrange(
|
| 417 |
+
v_target, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
|
| 418 |
+
),
|
| 419 |
+
1,
|
| 420 |
+
dim=1,
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
albedo_loss_1, _ = self.compute_loss(v_pred_albedo, v_target_albedo)
|
| 424 |
+
mr_loss_1, _ = self.compute_loss(v_pred_mr, v_target_mr)
|
| 425 |
+
|
| 426 |
+
cached_condition["ref_latents"] = ref_latents_another
|
| 427 |
+
cached_condition["dino_hidden_states"] = dino_hidden_states_another
|
| 428 |
+
v_pred_another = self.forward_unet(latents_noisy, t, **cached_condition)
|
| 429 |
+
v_pred_another_albedo, v_pred_another_mr = torch.split(
|
| 430 |
+
rearrange(
|
| 431 |
+
v_pred_another,
|
| 432 |
+
"(b n_pbr n) c h w -> b n_pbr n c h w",
|
| 433 |
+
n_pbr=len(self.pbr_settings),
|
| 434 |
+
n=self.num_view,
|
| 435 |
+
),
|
| 436 |
+
1,
|
| 437 |
+
dim=1,
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
albedo_loss_2, _ = self.compute_loss(v_pred_another_albedo, v_target_albedo)
|
| 441 |
+
mr_loss_2, _ = self.compute_loss(v_pred_another_mr, v_target_mr)
|
| 442 |
+
|
| 443 |
+
consistency_loss, _ = self.compute_loss(v_pred_another, v_pred)
|
| 444 |
+
|
| 445 |
+
albedo_loss = (albedo_loss_1 + albedo_loss_2) * 0.5
|
| 446 |
+
mr_loss = (mr_loss_1 + mr_loss_2) * 0.5
|
| 447 |
+
|
| 448 |
+
log_loss_dict = {}
|
| 449 |
+
log_loss_dict.update({f"train/albedo_loss": albedo_loss})
|
| 450 |
+
log_loss_dict.update({f"train/mr_loss": mr_loss})
|
| 451 |
+
log_loss_dict.update({f"train/cons_loss": consistency_loss})
|
| 452 |
+
|
| 453 |
+
loss_dict = log_loss_dict
|
| 454 |
+
|
| 455 |
+
elif self.train_scheduler.config.prediction_type == "epsilon":
|
| 456 |
+
e_pred = self.forward_unet(latents_noisy, t, **cached_condition)
|
| 457 |
+
loss, loss_dict = self.compute_loss(e_pred, noise)
|
| 458 |
+
else:
|
| 459 |
+
raise f"No {self.train_scheduler.config.prediction_type}"
|
| 460 |
+
|
| 461 |
+
# logging
|
| 462 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 463 |
+
self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 464 |
+
lr = self.optimizers().param_groups[0]["lr"]
|
| 465 |
+
self.log("lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 466 |
+
|
| 467 |
+
return 0.85 * (albedo_loss + mr_loss) + 0.15 * consistency_loss
|
| 468 |
+
|
| 469 |
+
def compute_loss(self, noise_pred, noise_gt):
|
| 470 |
+
loss = F.mse_loss(noise_pred, noise_gt)
|
| 471 |
+
prefix = "train"
|
| 472 |
+
loss_dict = {}
|
| 473 |
+
loss_dict.update({f"{prefix}/loss": loss})
|
| 474 |
+
return loss, loss_dict
|
| 475 |
+
|
| 476 |
+
@torch.no_grad()
|
| 477 |
+
def validation_step(self, batch, batch_idx):
|
| 478 |
+
"""Performs validation on a single batch.
|
| 479 |
+
|
| 480 |
+
Generates predicted images using:
|
| 481 |
+
1. Reference conditioning images
|
| 482 |
+
2. Optional normal/position maps
|
| 483 |
+
3. Frozen DINO features (if enabled)
|
| 484 |
+
4. Text prompt conditioning
|
| 485 |
+
|
| 486 |
+
Compares predictions against ground truth targets and prepares visualization.
|
| 487 |
+
Stores results for epoch-level aggregation.
|
| 488 |
+
|
| 489 |
+
Args:
|
| 490 |
+
batch: Input batch from validation dataloader
|
| 491 |
+
batch_idx: Index of current batch
|
| 492 |
+
"""
|
| 493 |
+
# [Validation image generation and comparison logic...]
|
| 494 |
+
# Key steps:
|
| 495 |
+
# 1. Preprocess conditioning images to PIL format
|
| 496 |
+
# 2. Set up conditioning inputs (normal maps, position maps, DINO features)
|
| 497 |
+
# 3. Run pipeline inference with fixed prompt ("high quality")
|
| 498 |
+
# 4. Decode latent outputs to image space
|
| 499 |
+
# 5. Arrange predictions and ground truths for visualization
|
| 500 |
+
|
| 501 |
+
cond_imgs_tensor, _, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch)
|
| 502 |
+
resolution = self.view_size
|
| 503 |
+
image_pils = []
|
| 504 |
+
for i in range(cond_imgs_tensor.shape[0]):
|
| 505 |
+
image_pils.append([])
|
| 506 |
+
for j in range(cond_imgs_tensor.shape[1]):
|
| 507 |
+
image_pils[-1].append(v2.functional.to_pil_image(cond_imgs_tensor[i, j, ...]))
|
| 508 |
+
|
| 509 |
+
outputs, gts = [], []
|
| 510 |
+
for idx in range(len(image_pils)):
|
| 511 |
+
cond_imgs = image_pils[idx]
|
| 512 |
+
|
| 513 |
+
cached_condition = dict(num_in_batch=self.num_view, N_pbrs=len(self.pbr_settings))
|
| 514 |
+
if normal_imgs is not None:
|
| 515 |
+
cached_condition["images_normal"] = normal_imgs[0][idx, ...].unsqueeze(0)
|
| 516 |
+
if position_imgs is not None:
|
| 517 |
+
cached_condition["images_position"] = position_imgs[0][idx, ...].unsqueeze(0)
|
| 518 |
+
if self.pipeline.unet.use_dino:
|
| 519 |
+
dino_hidden_states = self.dino_v2([cond_imgs][0])
|
| 520 |
+
cached_condition["dino_hidden_states"] = dino_hidden_states
|
| 521 |
+
|
| 522 |
+
latent = self.pipeline(
|
| 523 |
+
cond_imgs,
|
| 524 |
+
prompt="high quality",
|
| 525 |
+
num_inference_steps=30,
|
| 526 |
+
output_type="latent",
|
| 527 |
+
height=resolution,
|
| 528 |
+
width=resolution,
|
| 529 |
+
**cached_condition,
|
| 530 |
+
).images
|
| 531 |
+
|
| 532 |
+
image = self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[
|
| 533 |
+
0
|
| 534 |
+
] # [-1, 1]
|
| 535 |
+
image = (image * 0.5 + 0.5).clamp(0, 1)
|
| 536 |
+
|
| 537 |
+
image = rearrange(
|
| 538 |
+
image, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
|
| 539 |
+
)
|
| 540 |
+
image = torch.cat((torch.ones_like(image[:, :, :1, ...]) * 0.5, image), dim=2)
|
| 541 |
+
image = rearrange(image, "b n_pbr n c h w -> (b n_pbr n) c h w")
|
| 542 |
+
image = rearrange(
|
| 543 |
+
image,
|
| 544 |
+
"(b n_pbr n) c h w -> b c (n_pbr h) (n w)",
|
| 545 |
+
b=1,
|
| 546 |
+
n_pbr=len(self.pbr_settings),
|
| 547 |
+
n=self.num_view + 1,
|
| 548 |
+
)
|
| 549 |
+
outputs.append(image)
|
| 550 |
+
|
| 551 |
+
all_target_pbrs = []
|
| 552 |
+
for pbr_token in self.pbr_settings:
|
| 553 |
+
all_target_pbrs.append(target_imgs[pbr_token])
|
| 554 |
+
all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0)
|
| 555 |
+
all_target_pbrs = torch.cat(
|
| 556 |
+
(cond_imgs_tensor.unsqueeze(1).repeat(1, len(self.pbr_settings), 1, 1, 1, 1), all_target_pbrs), dim=2
|
| 557 |
+
)
|
| 558 |
+
all_target_pbrs = rearrange(all_target_pbrs, "b n_pbrs n c h w -> b c (n_pbrs h) (n w)")
|
| 559 |
+
gts = all_target_pbrs
|
| 560 |
+
outputs = torch.cat(outputs, dim=0).to(self.device)
|
| 561 |
+
images = torch.cat([gts, outputs], dim=-2)
|
| 562 |
+
self.validation_step_outputs.append(images)
|
| 563 |
+
|
| 564 |
+
@torch.no_grad()
|
| 565 |
+
def on_validation_epoch_end(self):
|
| 566 |
+
"""Aggregates validation results at epoch end.
|
| 567 |
+
|
| 568 |
+
Gathers outputs from all GPUs (if distributed training),
|
| 569 |
+
creates a unified visualization grid, and saves to disk.
|
| 570 |
+
Only rank 0 process performs saving.
|
| 571 |
+
"""
|
| 572 |
+
# [Result aggregation and visualization...]
|
| 573 |
+
# Key steps:
|
| 574 |
+
# 1. Gather validation outputs from all processes
|
| 575 |
+
# 2. Create image grid combining ground truths and predictions
|
| 576 |
+
# 3. Save visualization with step-numbered filename
|
| 577 |
+
# 4. Clear memory for next validation cycle
|
| 578 |
+
|
| 579 |
+
images = torch.cat(self.validation_step_outputs, dim=0)
|
| 580 |
+
all_images = self.all_gather(images)
|
| 581 |
+
all_images = rearrange(all_images, "r b c h w -> (r b) c h w")
|
| 582 |
+
|
| 583 |
+
if self.global_rank == 0:
|
| 584 |
+
grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1))
|
| 585 |
+
save_image(grid, os.path.join(self.logdir, "images_val", f"val_{self.global_step:07d}.png"))
|
| 586 |
+
|
| 587 |
+
self.validation_step_outputs.clear() # free memory
|
| 588 |
+
|
| 589 |
+
def configure_optimizers(self):
|
| 590 |
+
lr = self.learning_rate
|
| 591 |
+
optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr)
|
| 592 |
+
|
| 593 |
+
def lr_lambda(step):
|
| 594 |
+
warm_up_step = 1000
|
| 595 |
+
T_step = 9000
|
| 596 |
+
gamma = 0.9
|
| 597 |
+
min_lr = 0.1 if step >= warm_up_step else 0.0
|
| 598 |
+
max_lr = 1.0
|
| 599 |
+
normalized_step = step % (warm_up_step + T_step)
|
| 600 |
+
current_max_lr = max_lr * gamma ** (step // (warm_up_step + T_step))
|
| 601 |
+
if current_max_lr < min_lr:
|
| 602 |
+
current_max_lr = min_lr
|
| 603 |
+
if normalized_step < warm_up_step:
|
| 604 |
+
lr_step = min_lr + (normalized_step / warm_up_step) * (current_max_lr - min_lr)
|
| 605 |
+
else:
|
| 606 |
+
step_wc_wp = normalized_step - warm_up_step
|
| 607 |
+
ratio = step_wc_wp / T_step
|
| 608 |
+
lr_step = min_lr + 0.5 * (current_max_lr - min_lr) * (1 + math.cos(math.pi * ratio))
|
| 609 |
+
return lr_step
|
| 610 |
+
|
| 611 |
+
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
|
| 612 |
+
|
| 613 |
+
lr_scheduler_config = {
|
| 614 |
+
"scheduler": lr_scheduler,
|
| 615 |
+
"interval": "step",
|
| 616 |
+
"frequency": 1,
|
| 617 |
+
"monitor": "val_loss",
|
| 618 |
+
"strict": False,
|
| 619 |
+
"name": None,
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}
|