Delete tokenization_hy.py
Browse files- tokenization_hy.py +0 -298
tokenization_hy.py
DELETED
@@ -1,298 +0,0 @@
|
|
1 |
-
import base64
|
2 |
-
import logging
|
3 |
-
import os
|
4 |
-
import unicodedata
|
5 |
-
from typing import Collection, Dict, List, Set, Tuple, Union
|
6 |
-
|
7 |
-
import tiktoken
|
8 |
-
from transformers import PreTrainedTokenizer, AddedToken
|
9 |
-
|
10 |
-
logger = logging.getLogger(__name__)
|
11 |
-
|
12 |
-
|
13 |
-
VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"}
|
14 |
-
|
15 |
-
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
16 |
-
# PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
17 |
-
ENDOFTEXT = "<|endoftext|>"
|
18 |
-
STARTOFTEXT = "<|startoftext|>"
|
19 |
-
BOSTOKEN = "<|bos|>"
|
20 |
-
EOSTOKEN = "<|eos|>"
|
21 |
-
PADTOKEN = "<|pad|>"
|
22 |
-
|
23 |
-
# as the default behavior is changed to allow special tokens in
|
24 |
-
# regular texts, the surface forms of special tokens need to be
|
25 |
-
# as different as possible to minimize the impact
|
26 |
-
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
27 |
-
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
28 |
-
|
29 |
-
|
30 |
-
SPECIAL_START_ID = 127957
|
31 |
-
|
32 |
-
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
33 |
-
# with open(tiktoken_bpe_file, "rb", encoding="utf-8") as f:
|
34 |
-
# contents = f.read()
|
35 |
-
dic = {}
|
36 |
-
rank = 0
|
37 |
-
for line in open(tiktoken_bpe_file, "rb"):
|
38 |
-
if line:
|
39 |
-
token, _ = line.split()
|
40 |
-
if base64.b64decode(token) in dic:
|
41 |
-
continue
|
42 |
-
dic[base64.b64decode(token)] = int(rank)
|
43 |
-
rank += 1
|
44 |
-
global SPECIAL_START_ID
|
45 |
-
SPECIAL_START_ID=rank
|
46 |
-
return dic
|
47 |
-
|
48 |
-
# NOTE: Please use the code line to check `SPECIAL_START_ID` right, this will affect the SPECIAL_START_ID
|
49 |
-
# _load_tiktoken_bpe('/apdcephfs/share_1502809/shaneshu/tokenizer_exp/other_tokenizer_vocab/hy/' + VOCAB_FILES_NAMES['vocab_file'])
|
50 |
-
# print(SPECIAL_START_ID)
|
51 |
-
|
52 |
-
SPECIAL_TOKENS = tuple(
|
53 |
-
enumerate(
|
54 |
-
(
|
55 |
-
(
|
56 |
-
ENDOFTEXT,
|
57 |
-
STARTOFTEXT,
|
58 |
-
BOSTOKEN,
|
59 |
-
EOSTOKEN,
|
60 |
-
PADTOKEN,
|
61 |
-
)
|
62 |
-
+ EXTRAS
|
63 |
-
),
|
64 |
-
start=SPECIAL_START_ID,
|
65 |
-
)
|
66 |
-
)
|
67 |
-
# NOTE: Unused Token ID starts from 127962
|
68 |
-
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
69 |
-
|
70 |
-
class HYTokenizer(PreTrainedTokenizer):
|
71 |
-
"""hunyuan tokenizer."""
|
72 |
-
|
73 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
74 |
-
|
75 |
-
def __init__(
|
76 |
-
self,
|
77 |
-
vocab_file,
|
78 |
-
errors="replace",
|
79 |
-
extra_vocab_file=None,
|
80 |
-
**kwargs,
|
81 |
-
):
|
82 |
-
super().__init__(**kwargs)
|
83 |
-
|
84 |
-
# how to handle errors in decoding UTF-8 byte sequences
|
85 |
-
# use ignore if you are in streaming inference
|
86 |
-
self.errors = errors
|
87 |
-
|
88 |
-
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
89 |
-
self.special_tokens = {
|
90 |
-
token: index
|
91 |
-
for index, token in SPECIAL_TOKENS
|
92 |
-
}
|
93 |
-
|
94 |
-
# try load extra vocab from file
|
95 |
-
if extra_vocab_file is not None:
|
96 |
-
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
97 |
-
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
98 |
-
for token, index in extra_mergeable_ranks.items():
|
99 |
-
if token in self.mergeable_ranks:
|
100 |
-
logger.info(f"extra token {token} exists, skipping")
|
101 |
-
continue
|
102 |
-
if index in used_ids:
|
103 |
-
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
104 |
-
continue
|
105 |
-
self.mergeable_ranks[token] = index
|
106 |
-
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
107 |
-
|
108 |
-
enc = tiktoken.Encoding(
|
109 |
-
"HunYuan",
|
110 |
-
pat_str=PAT_STR,
|
111 |
-
mergeable_ranks=self.mergeable_ranks,
|
112 |
-
special_tokens=self.special_tokens,
|
113 |
-
)
|
114 |
-
assert (
|
115 |
-
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
116 |
-
), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
117 |
-
|
118 |
-
self.decoder = {
|
119 |
-
v: k for k, v in self.mergeable_ranks.items()
|
120 |
-
} # type: dict[int, bytes|str]
|
121 |
-
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
122 |
-
|
123 |
-
self.tokenizer = enc # type: tiktoken.Encoding
|
124 |
-
|
125 |
-
self.eod_id = self.tokenizer.eot_token
|
126 |
-
self.bod_id = self.special_tokens[STARTOFTEXT]
|
127 |
-
self.bos_id = self.special_tokens[BOSTOKEN]
|
128 |
-
self.eos_id = self.special_tokens[EOSTOKEN]
|
129 |
-
self.pad_id = self.special_tokens[PADTOKEN]
|
130 |
-
|
131 |
-
def __getstate__(self):
|
132 |
-
# for pickle lovers
|
133 |
-
state = self.__dict__.copy()
|
134 |
-
del state["tokenizer"]
|
135 |
-
return state
|
136 |
-
|
137 |
-
def __setstate__(self, state):
|
138 |
-
# tokenizer is not python native; don't pass it; rebuild it
|
139 |
-
self.__dict__.update(state)
|
140 |
-
enc = tiktoken.Encoding(
|
141 |
-
"HunYuan",
|
142 |
-
pat_str=PAT_STR,
|
143 |
-
mergeable_ranks=self.mergeable_ranks,
|
144 |
-
special_tokens=self.special_tokens,
|
145 |
-
)
|
146 |
-
self.tokenizer = enc
|
147 |
-
|
148 |
-
def __len__(self) -> int:
|
149 |
-
return self.tokenizer.n_vocab
|
150 |
-
|
151 |
-
def get_vocab(self) -> Dict[bytes, int]:
|
152 |
-
return self.mergeable_ranks
|
153 |
-
|
154 |
-
def convert_tokens_to_ids(
|
155 |
-
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
156 |
-
) -> List[int]:
|
157 |
-
ids = []
|
158 |
-
if isinstance(tokens, (str, bytes)):
|
159 |
-
if tokens in self.special_tokens:
|
160 |
-
return self.special_tokens[tokens]
|
161 |
-
else:
|
162 |
-
return self.mergeable_ranks.get(tokens)
|
163 |
-
for token in tokens:
|
164 |
-
if token in self.special_tokens:
|
165 |
-
ids.append(self.special_tokens[token])
|
166 |
-
else:
|
167 |
-
ids.append(self.mergeable_ranks.get(token))
|
168 |
-
return ids
|
169 |
-
|
170 |
-
def _add_tokens(
|
171 |
-
self,
|
172 |
-
new_tokens: Union[List[str], List[AddedToken]],
|
173 |
-
special_tokens: bool = False,
|
174 |
-
) -> int:
|
175 |
-
if not special_tokens and new_tokens:
|
176 |
-
raise ValueError("Adding regular tokens is not supported")
|
177 |
-
for token in new_tokens:
|
178 |
-
surface_form = token.content if isinstance(token, AddedToken) else token
|
179 |
-
if surface_form not in SPECIAL_TOKENS_SET:
|
180 |
-
raise ValueError("Adding unknown special tokens is not supported")
|
181 |
-
return 0
|
182 |
-
|
183 |
-
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
184 |
-
"""
|
185 |
-
Save only the vocabulary of the tokenizer (vocabulary).
|
186 |
-
Returns:
|
187 |
-
`Tuple(str)`: Paths to the files saved.
|
188 |
-
"""
|
189 |
-
file_path = os.path.join(save_directory, "hunyuan.tiktoken")
|
190 |
-
with open(file_path, "w", encoding="utf-8") as w:
|
191 |
-
for k, v in self.mergeable_ranks.items():
|
192 |
-
line = base64.b64encode(k).decode("utf-8") + " " + str(v) + "\n"
|
193 |
-
w.write(line)
|
194 |
-
return (file_path,)
|
195 |
-
|
196 |
-
def tokenize(
|
197 |
-
self,
|
198 |
-
text: str,
|
199 |
-
allowed_special: Union[Set, str] = "all",
|
200 |
-
disallowed_special: Union[Collection, str] = (),
|
201 |
-
**kwargs,
|
202 |
-
) -> List[Union[bytes, str]]:
|
203 |
-
"""
|
204 |
-
Converts a string in a sequence of tokens.
|
205 |
-
Args:
|
206 |
-
text (`str`):
|
207 |
-
The sequence to be encoded.
|
208 |
-
allowed_special (`Literal["all"]` or `set`):
|
209 |
-
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
210 |
-
Default to "all".
|
211 |
-
disallowed_special (`Literal["all"]` or `Collection`):
|
212 |
-
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
213 |
-
Default to an empty tuple.
|
214 |
-
kwargs (additional keyword arguments, *optional*):
|
215 |
-
Will be passed to the underlying model specific encode method.
|
216 |
-
Returns:
|
217 |
-
`List[bytes|str]`: The list of tokens.
|
218 |
-
"""
|
219 |
-
tokens = []
|
220 |
-
text = unicodedata.normalize("NFC", text)
|
221 |
-
|
222 |
-
# this implementation takes a detour: text -> token id -> token surface forms
|
223 |
-
for t in self.tokenizer.encode(
|
224 |
-
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
225 |
-
):
|
226 |
-
tokens.append(self.decoder[t])
|
227 |
-
return tokens
|
228 |
-
|
229 |
-
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
230 |
-
"""
|
231 |
-
Converts a sequence of tokens in a single string.
|
232 |
-
"""
|
233 |
-
text = ""
|
234 |
-
temp = b""
|
235 |
-
for t in tokens:
|
236 |
-
if isinstance(t, str):
|
237 |
-
if temp:
|
238 |
-
text += temp.decode("utf-8", errors=self.errors)
|
239 |
-
temp = b""
|
240 |
-
text += t
|
241 |
-
elif isinstance(t, bytes):
|
242 |
-
temp += t
|
243 |
-
else:
|
244 |
-
raise TypeError("token should only be of type types or str")
|
245 |
-
if temp:
|
246 |
-
text += temp.decode("utf-8", errors=self.errors)
|
247 |
-
return text
|
248 |
-
|
249 |
-
@property
|
250 |
-
def vocab_size(self):
|
251 |
-
return self.tokenizer.n_vocab
|
252 |
-
|
253 |
-
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
254 |
-
"""Converts an id to a token, special tokens included"""
|
255 |
-
if index in self.decoder:
|
256 |
-
return self.decoder[index]
|
257 |
-
raise ValueError("unknown ids")
|
258 |
-
|
259 |
-
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
260 |
-
"""Converts a token to an id using the vocab, special tokens included"""
|
261 |
-
if token in self.special_tokens:
|
262 |
-
return self.special_tokens[token]
|
263 |
-
if token in self.mergeable_ranks:
|
264 |
-
return self.mergeable_ranks[token]
|
265 |
-
raise ValueError("unknown token")
|
266 |
-
|
267 |
-
def _tokenize(self, text: str, **kwargs):
|
268 |
-
"""
|
269 |
-
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
270 |
-
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
271 |
-
Do NOT take care of added tokens.
|
272 |
-
"""
|
273 |
-
raise NotImplementedError
|
274 |
-
|
275 |
-
def _decode(
|
276 |
-
self,
|
277 |
-
token_ids: Union[int, List[int]],
|
278 |
-
skip_special_tokens: bool = False,
|
279 |
-
errors: str = None,
|
280 |
-
**kwargs,
|
281 |
-
) -> str:
|
282 |
-
if isinstance(token_ids, int):
|
283 |
-
token_ids = [token_ids]
|
284 |
-
if skip_special_tokens:
|
285 |
-
token_ids = [i for i in token_ids if i < self.eod_id]
|
286 |
-
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
287 |
-
|
288 |
-
# tests
|
289 |
-
if __name__ == "__main__":
|
290 |
-
tokenizer = HYTokenizer.from_pretrained('./hy')
|
291 |
-
text = '你好,世界'
|
292 |
-
tokens = tokenizer.tokenize(text)
|
293 |
-
print(tokens)
|
294 |
-
ids = tokenizer.convert_tokens_to_ids(tokens)
|
295 |
-
print(ids)
|
296 |
-
text2 = tokenizer.convert_tokens_to_string(tokens)
|
297 |
-
print(text2)
|
298 |
-
ids2 = tokenizer.convert_tokens_to_ids(tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|