manaestras commited on
Commit
9f1d108
·
verified ·
1 Parent(s): 9aa9e81

Delete tokenization_hy.py

Browse files
Files changed (1) hide show
  1. tokenization_hy.py +0 -298
tokenization_hy.py DELETED
@@ -1,298 +0,0 @@
1
- import base64
2
- import logging
3
- import os
4
- import unicodedata
5
- from typing import Collection, Dict, List, Set, Tuple, Union
6
-
7
- import tiktoken
8
- from transformers import PreTrainedTokenizer, AddedToken
9
-
10
- logger = logging.getLogger(__name__)
11
-
12
-
13
- VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"}
14
-
15
- PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
16
- # PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
17
- ENDOFTEXT = "<|endoftext|>"
18
- STARTOFTEXT = "<|startoftext|>"
19
- BOSTOKEN = "<|bos|>"
20
- EOSTOKEN = "<|eos|>"
21
- PADTOKEN = "<|pad|>"
22
-
23
- # as the default behavior is changed to allow special tokens in
24
- # regular texts, the surface forms of special tokens need to be
25
- # as different as possible to minimize the impact
26
- EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
27
- # changed to use actual index to avoid misconfiguration with vocabulary expansion
28
-
29
-
30
- SPECIAL_START_ID = 127957
31
-
32
- def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
33
- # with open(tiktoken_bpe_file, "rb", encoding="utf-8") as f:
34
- # contents = f.read()
35
- dic = {}
36
- rank = 0
37
- for line in open(tiktoken_bpe_file, "rb"):
38
- if line:
39
- token, _ = line.split()
40
- if base64.b64decode(token) in dic:
41
- continue
42
- dic[base64.b64decode(token)] = int(rank)
43
- rank += 1
44
- global SPECIAL_START_ID
45
- SPECIAL_START_ID=rank
46
- return dic
47
-
48
- # NOTE: Please use the code line to check `SPECIAL_START_ID` right, this will affect the SPECIAL_START_ID
49
- # _load_tiktoken_bpe('/apdcephfs/share_1502809/shaneshu/tokenizer_exp/other_tokenizer_vocab/hy/' + VOCAB_FILES_NAMES['vocab_file'])
50
- # print(SPECIAL_START_ID)
51
-
52
- SPECIAL_TOKENS = tuple(
53
- enumerate(
54
- (
55
- (
56
- ENDOFTEXT,
57
- STARTOFTEXT,
58
- BOSTOKEN,
59
- EOSTOKEN,
60
- PADTOKEN,
61
- )
62
- + EXTRAS
63
- ),
64
- start=SPECIAL_START_ID,
65
- )
66
- )
67
- # NOTE: Unused Token ID starts from 127962
68
- SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
69
-
70
- class HYTokenizer(PreTrainedTokenizer):
71
- """hunyuan tokenizer."""
72
-
73
- vocab_files_names = VOCAB_FILES_NAMES
74
-
75
- def __init__(
76
- self,
77
- vocab_file,
78
- errors="replace",
79
- extra_vocab_file=None,
80
- **kwargs,
81
- ):
82
- super().__init__(**kwargs)
83
-
84
- # how to handle errors in decoding UTF-8 byte sequences
85
- # use ignore if you are in streaming inference
86
- self.errors = errors
87
-
88
- self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
89
- self.special_tokens = {
90
- token: index
91
- for index, token in SPECIAL_TOKENS
92
- }
93
-
94
- # try load extra vocab from file
95
- if extra_vocab_file is not None:
96
- used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
97
- extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
98
- for token, index in extra_mergeable_ranks.items():
99
- if token in self.mergeable_ranks:
100
- logger.info(f"extra token {token} exists, skipping")
101
- continue
102
- if index in used_ids:
103
- logger.info(f'the index {index} for extra token {token} exists, skipping')
104
- continue
105
- self.mergeable_ranks[token] = index
106
- # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
107
-
108
- enc = tiktoken.Encoding(
109
- "HunYuan",
110
- pat_str=PAT_STR,
111
- mergeable_ranks=self.mergeable_ranks,
112
- special_tokens=self.special_tokens,
113
- )
114
- assert (
115
- len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
116
- ), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding"
117
-
118
- self.decoder = {
119
- v: k for k, v in self.mergeable_ranks.items()
120
- } # type: dict[int, bytes|str]
121
- self.decoder.update({v: k for k, v in self.special_tokens.items()})
122
-
123
- self.tokenizer = enc # type: tiktoken.Encoding
124
-
125
- self.eod_id = self.tokenizer.eot_token
126
- self.bod_id = self.special_tokens[STARTOFTEXT]
127
- self.bos_id = self.special_tokens[BOSTOKEN]
128
- self.eos_id = self.special_tokens[EOSTOKEN]
129
- self.pad_id = self.special_tokens[PADTOKEN]
130
-
131
- def __getstate__(self):
132
- # for pickle lovers
133
- state = self.__dict__.copy()
134
- del state["tokenizer"]
135
- return state
136
-
137
- def __setstate__(self, state):
138
- # tokenizer is not python native; don't pass it; rebuild it
139
- self.__dict__.update(state)
140
- enc = tiktoken.Encoding(
141
- "HunYuan",
142
- pat_str=PAT_STR,
143
- mergeable_ranks=self.mergeable_ranks,
144
- special_tokens=self.special_tokens,
145
- )
146
- self.tokenizer = enc
147
-
148
- def __len__(self) -> int:
149
- return self.tokenizer.n_vocab
150
-
151
- def get_vocab(self) -> Dict[bytes, int]:
152
- return self.mergeable_ranks
153
-
154
- def convert_tokens_to_ids(
155
- self, tokens: Union[bytes, str, List[Union[bytes, str]]]
156
- ) -> List[int]:
157
- ids = []
158
- if isinstance(tokens, (str, bytes)):
159
- if tokens in self.special_tokens:
160
- return self.special_tokens[tokens]
161
- else:
162
- return self.mergeable_ranks.get(tokens)
163
- for token in tokens:
164
- if token in self.special_tokens:
165
- ids.append(self.special_tokens[token])
166
- else:
167
- ids.append(self.mergeable_ranks.get(token))
168
- return ids
169
-
170
- def _add_tokens(
171
- self,
172
- new_tokens: Union[List[str], List[AddedToken]],
173
- special_tokens: bool = False,
174
- ) -> int:
175
- if not special_tokens and new_tokens:
176
- raise ValueError("Adding regular tokens is not supported")
177
- for token in new_tokens:
178
- surface_form = token.content if isinstance(token, AddedToken) else token
179
- if surface_form not in SPECIAL_TOKENS_SET:
180
- raise ValueError("Adding unknown special tokens is not supported")
181
- return 0
182
-
183
- def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
184
- """
185
- Save only the vocabulary of the tokenizer (vocabulary).
186
- Returns:
187
- `Tuple(str)`: Paths to the files saved.
188
- """
189
- file_path = os.path.join(save_directory, "hunyuan.tiktoken")
190
- with open(file_path, "w", encoding="utf-8") as w:
191
- for k, v in self.mergeable_ranks.items():
192
- line = base64.b64encode(k).decode("utf-8") + " " + str(v) + "\n"
193
- w.write(line)
194
- return (file_path,)
195
-
196
- def tokenize(
197
- self,
198
- text: str,
199
- allowed_special: Union[Set, str] = "all",
200
- disallowed_special: Union[Collection, str] = (),
201
- **kwargs,
202
- ) -> List[Union[bytes, str]]:
203
- """
204
- Converts a string in a sequence of tokens.
205
- Args:
206
- text (`str`):
207
- The sequence to be encoded.
208
- allowed_special (`Literal["all"]` or `set`):
209
- The surface forms of the tokens to be encoded as special tokens in regular texts.
210
- Default to "all".
211
- disallowed_special (`Literal["all"]` or `Collection`):
212
- The surface forms of the tokens that should not be in regular texts and trigger errors.
213
- Default to an empty tuple.
214
- kwargs (additional keyword arguments, *optional*):
215
- Will be passed to the underlying model specific encode method.
216
- Returns:
217
- `List[bytes|str]`: The list of tokens.
218
- """
219
- tokens = []
220
- text = unicodedata.normalize("NFC", text)
221
-
222
- # this implementation takes a detour: text -> token id -> token surface forms
223
- for t in self.tokenizer.encode(
224
- text, allowed_special=allowed_special, disallowed_special=disallowed_special
225
- ):
226
- tokens.append(self.decoder[t])
227
- return tokens
228
-
229
- def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
230
- """
231
- Converts a sequence of tokens in a single string.
232
- """
233
- text = ""
234
- temp = b""
235
- for t in tokens:
236
- if isinstance(t, str):
237
- if temp:
238
- text += temp.decode("utf-8", errors=self.errors)
239
- temp = b""
240
- text += t
241
- elif isinstance(t, bytes):
242
- temp += t
243
- else:
244
- raise TypeError("token should only be of type types or str")
245
- if temp:
246
- text += temp.decode("utf-8", errors=self.errors)
247
- return text
248
-
249
- @property
250
- def vocab_size(self):
251
- return self.tokenizer.n_vocab
252
-
253
- def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
254
- """Converts an id to a token, special tokens included"""
255
- if index in self.decoder:
256
- return self.decoder[index]
257
- raise ValueError("unknown ids")
258
-
259
- def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
260
- """Converts a token to an id using the vocab, special tokens included"""
261
- if token in self.special_tokens:
262
- return self.special_tokens[token]
263
- if token in self.mergeable_ranks:
264
- return self.mergeable_ranks[token]
265
- raise ValueError("unknown token")
266
-
267
- def _tokenize(self, text: str, **kwargs):
268
- """
269
- Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
270
- vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
271
- Do NOT take care of added tokens.
272
- """
273
- raise NotImplementedError
274
-
275
- def _decode(
276
- self,
277
- token_ids: Union[int, List[int]],
278
- skip_special_tokens: bool = False,
279
- errors: str = None,
280
- **kwargs,
281
- ) -> str:
282
- if isinstance(token_ids, int):
283
- token_ids = [token_ids]
284
- if skip_special_tokens:
285
- token_ids = [i for i in token_ids if i < self.eod_id]
286
- return self.tokenizer.decode(token_ids, errors=errors or self.errors)
287
-
288
- # tests
289
- if __name__ == "__main__":
290
- tokenizer = HYTokenizer.from_pretrained('./hy')
291
- text = '你好,世界'
292
- tokens = tokenizer.tokenize(text)
293
- print(tokens)
294
- ids = tokenizer.convert_tokens_to_ids(tokens)
295
- print(ids)
296
- text2 = tokenizer.convert_tokens_to_string(tokens)
297
- print(text2)
298
- ids2 = tokenizer.convert_tokens_to_ids(tokens)