|  | import base64 | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import unicodedata | 
					
						
						|  | from typing import Collection, Dict, List, Set, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import tiktoken | 
					
						
						|  | from transformers import PreTrainedTokenizer, AddedToken | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"} | 
					
						
						|  |  | 
					
						
						|  | PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" | 
					
						
						|  |  | 
					
						
						|  | ENDOFTEXT = "<|endoftext|>" | 
					
						
						|  | STARTOFTEXT = "<|startoftext|>" | 
					
						
						|  | BOSTOKEN = "<|bos|>" | 
					
						
						|  | EOSTOKEN = "<|eos|>" | 
					
						
						|  | PADTOKEN = "<|pad|>" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | SPECIAL_START_ID = 127957 | 
					
						
						|  |  | 
					
						
						|  | def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dic = {} | 
					
						
						|  | rank = 0 | 
					
						
						|  | for line in open(tiktoken_bpe_file, "rb"): | 
					
						
						|  | if line: | 
					
						
						|  | token, _ = line.split() | 
					
						
						|  | if base64.b64decode(token) in dic: | 
					
						
						|  | continue | 
					
						
						|  | dic[base64.b64decode(token)] = int(rank) | 
					
						
						|  | rank += 1 | 
					
						
						|  | global SPECIAL_START_ID | 
					
						
						|  | SPECIAL_START_ID=rank | 
					
						
						|  | return dic | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | SPECIAL_TOKENS = tuple( | 
					
						
						|  | enumerate( | 
					
						
						|  | ( | 
					
						
						|  | ( | 
					
						
						|  | ENDOFTEXT, | 
					
						
						|  | STARTOFTEXT, | 
					
						
						|  | BOSTOKEN, | 
					
						
						|  | EOSTOKEN, | 
					
						
						|  | PADTOKEN, | 
					
						
						|  | ) | 
					
						
						|  | + EXTRAS | 
					
						
						|  | ), | 
					
						
						|  | start=SPECIAL_START_ID, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS) | 
					
						
						|  |  | 
					
						
						|  | class HYTokenizer(PreTrainedTokenizer): | 
					
						
						|  | """hunyuan tokenizer.""" | 
					
						
						|  |  | 
					
						
						|  | vocab_files_names = VOCAB_FILES_NAMES | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_file, | 
					
						
						|  | errors="replace", | 
					
						
						|  | extra_vocab_file=None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.errors = errors | 
					
						
						|  |  | 
					
						
						|  | self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) | 
					
						
						|  | self.special_tokens = { | 
					
						
						|  | token: index | 
					
						
						|  | for index, token in SPECIAL_TOKENS | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if extra_vocab_file is not None: | 
					
						
						|  | used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values()) | 
					
						
						|  | extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file) | 
					
						
						|  | for token, index in extra_mergeable_ranks.items(): | 
					
						
						|  | if token in self.mergeable_ranks: | 
					
						
						|  | logger.info(f"extra token {token} exists, skipping") | 
					
						
						|  | continue | 
					
						
						|  | if index in used_ids: | 
					
						
						|  | logger.info(f'the index {index} for extra token {token} exists, skipping') | 
					
						
						|  | continue | 
					
						
						|  | self.mergeable_ranks[token] = index | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | enc = tiktoken.Encoding( | 
					
						
						|  | "HunYuan", | 
					
						
						|  | pat_str=PAT_STR, | 
					
						
						|  | mergeable_ranks=self.mergeable_ranks, | 
					
						
						|  | special_tokens=self.special_tokens, | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab | 
					
						
						|  | ), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding" | 
					
						
						|  |  | 
					
						
						|  | self.decoder = { | 
					
						
						|  | v: k for k, v in self.mergeable_ranks.items() | 
					
						
						|  | } | 
					
						
						|  | self.decoder.update({v: k for k, v in self.special_tokens.items()}) | 
					
						
						|  |  | 
					
						
						|  | self.tokenizer = enc | 
					
						
						|  |  | 
					
						
						|  | self.eod_id = self.tokenizer.eot_token | 
					
						
						|  | self.bod_id = self.special_tokens[STARTOFTEXT] | 
					
						
						|  | self.bos_id = self.special_tokens[BOSTOKEN] | 
					
						
						|  | self.eos_id = self.special_tokens[EOSTOKEN] | 
					
						
						|  | self.pad_id = self.special_tokens[PADTOKEN] | 
					
						
						|  |  | 
					
						
						|  | def __getstate__(self): | 
					
						
						|  |  | 
					
						
						|  | state = self.__dict__.copy() | 
					
						
						|  | del state["tokenizer"] | 
					
						
						|  | return state | 
					
						
						|  |  | 
					
						
						|  | def __setstate__(self, state): | 
					
						
						|  |  | 
					
						
						|  | self.__dict__.update(state) | 
					
						
						|  | enc = tiktoken.Encoding( | 
					
						
						|  | "HunYuan", | 
					
						
						|  | pat_str=PAT_STR, | 
					
						
						|  | mergeable_ranks=self.mergeable_ranks, | 
					
						
						|  | special_tokens=self.special_tokens, | 
					
						
						|  | ) | 
					
						
						|  | self.tokenizer = enc | 
					
						
						|  |  | 
					
						
						|  | def __len__(self) -> int: | 
					
						
						|  | return self.tokenizer.n_vocab | 
					
						
						|  |  | 
					
						
						|  | def get_vocab(self) -> Dict[bytes, int]: | 
					
						
						|  | return self.mergeable_ranks | 
					
						
						|  |  | 
					
						
						|  | def convert_tokens_to_ids( | 
					
						
						|  | self, tokens: Union[bytes, str, List[Union[bytes, str]]] | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | ids = [] | 
					
						
						|  | if isinstance(tokens, (str, bytes)): | 
					
						
						|  | if tokens in self.special_tokens: | 
					
						
						|  | return self.special_tokens[tokens] | 
					
						
						|  | else: | 
					
						
						|  | return self.mergeable_ranks.get(tokens) | 
					
						
						|  | for token in tokens: | 
					
						
						|  | if token in self.special_tokens: | 
					
						
						|  | ids.append(self.special_tokens[token]) | 
					
						
						|  | else: | 
					
						
						|  | ids.append(self.mergeable_ranks.get(token)) | 
					
						
						|  | return ids | 
					
						
						|  |  | 
					
						
						|  | def _add_tokens( | 
					
						
						|  | self, | 
					
						
						|  | new_tokens: Union[List[str], List[AddedToken]], | 
					
						
						|  | special_tokens: bool = False, | 
					
						
						|  | ) -> int: | 
					
						
						|  | if not special_tokens and new_tokens: | 
					
						
						|  | raise ValueError("Adding regular tokens is not supported") | 
					
						
						|  | for token in new_tokens: | 
					
						
						|  | surface_form = token.content if isinstance(token, AddedToken) else token | 
					
						
						|  | if surface_form not in SPECIAL_TOKENS_SET: | 
					
						
						|  | raise ValueError("Adding unknown special tokens is not supported") | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]: | 
					
						
						|  | """ | 
					
						
						|  | Save only the vocabulary of the tokenizer (vocabulary). | 
					
						
						|  | Returns: | 
					
						
						|  | `Tuple(str)`: Paths to the files saved. | 
					
						
						|  | """ | 
					
						
						|  | file_path = os.path.join(save_directory, "hunyuan.tiktoken") | 
					
						
						|  | with open(file_path, "w", encoding="utf-8") as w: | 
					
						
						|  | for k, v in self.mergeable_ranks.items(): | 
					
						
						|  | line = base64.b64encode(k).decode("utf-8") + " " + str(v) + "\n" | 
					
						
						|  | w.write(line) | 
					
						
						|  | return (file_path,) | 
					
						
						|  |  | 
					
						
						|  | def tokenize( | 
					
						
						|  | self, | 
					
						
						|  | text: str, | 
					
						
						|  | allowed_special: Union[Set, str] = "all", | 
					
						
						|  | disallowed_special: Union[Collection, str] = (), | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> List[Union[bytes, str]]: | 
					
						
						|  | """ | 
					
						
						|  | Converts a string in a sequence of tokens. | 
					
						
						|  | Args: | 
					
						
						|  | text (`str`): | 
					
						
						|  | The sequence to be encoded. | 
					
						
						|  | allowed_special (`Literal["all"]` or `set`): | 
					
						
						|  | The surface forms of the tokens to be encoded as special tokens in regular texts. | 
					
						
						|  | Default to "all". | 
					
						
						|  | disallowed_special (`Literal["all"]` or `Collection`): | 
					
						
						|  | The surface forms of the tokens that should not be in regular texts and trigger errors. | 
					
						
						|  | Default to an empty tuple. | 
					
						
						|  | kwargs (additional keyword arguments, *optional*): | 
					
						
						|  | Will be passed to the underlying model specific encode method. | 
					
						
						|  | Returns: | 
					
						
						|  | `List[bytes|str]`: The list of tokens. | 
					
						
						|  | """ | 
					
						
						|  | tokens = [] | 
					
						
						|  | text = unicodedata.normalize("NFC", text) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for t in self.tokenizer.encode( | 
					
						
						|  | text, allowed_special=allowed_special, disallowed_special=disallowed_special | 
					
						
						|  | ): | 
					
						
						|  | tokens.append(self.decoder[t]) | 
					
						
						|  | return tokens | 
					
						
						|  |  | 
					
						
						|  | def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str: | 
					
						
						|  | """ | 
					
						
						|  | Converts a sequence of tokens in a single string. | 
					
						
						|  | """ | 
					
						
						|  | text = "" | 
					
						
						|  | temp = b"" | 
					
						
						|  | for t in tokens: | 
					
						
						|  | if isinstance(t, str): | 
					
						
						|  | if temp: | 
					
						
						|  | text += temp.decode("utf-8", errors=self.errors) | 
					
						
						|  | temp = b"" | 
					
						
						|  | text += t | 
					
						
						|  | elif isinstance(t, bytes): | 
					
						
						|  | temp += t | 
					
						
						|  | else: | 
					
						
						|  | raise TypeError("token should only be of type types or str") | 
					
						
						|  | if temp: | 
					
						
						|  | text += temp.decode("utf-8", errors=self.errors) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def vocab_size(self): | 
					
						
						|  | return self.tokenizer.n_vocab | 
					
						
						|  |  | 
					
						
						|  | def _convert_id_to_token(self, index: int) -> Union[bytes, str]: | 
					
						
						|  | """Converts an id to a token, special tokens included""" | 
					
						
						|  | if index in self.decoder: | 
					
						
						|  | return self.decoder[index] | 
					
						
						|  | raise ValueError("unknown ids") | 
					
						
						|  |  | 
					
						
						|  | def _convert_token_to_id(self, token: Union[bytes, str]) -> int: | 
					
						
						|  | """Converts a token to an id using the vocab, special tokens included""" | 
					
						
						|  | if token in self.special_tokens: | 
					
						
						|  | return self.special_tokens[token] | 
					
						
						|  | if token in self.mergeable_ranks: | 
					
						
						|  | return self.mergeable_ranks[token] | 
					
						
						|  | raise ValueError("unknown token") | 
					
						
						|  |  | 
					
						
						|  | def _tokenize(self, text: str, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based | 
					
						
						|  | vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). | 
					
						
						|  | Do NOT take care of added tokens. | 
					
						
						|  | """ | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | def _decode( | 
					
						
						|  | self, | 
					
						
						|  | token_ids: Union[int, List[int]], | 
					
						
						|  | skip_special_tokens: bool = False, | 
					
						
						|  | errors: str = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> str: | 
					
						
						|  | if isinstance(token_ids, int): | 
					
						
						|  | token_ids = [token_ids] | 
					
						
						|  | if skip_special_tokens: | 
					
						
						|  | token_ids = [i for i in token_ids if i < self.eod_id] | 
					
						
						|  | return self.tokenizer.decode(token_ids, errors=errors or self.errors) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | tokenizer = HYTokenizer.from_pretrained('./hy') | 
					
						
						|  | text = '你好,世界' | 
					
						
						|  | tokens = tokenizer.tokenize(text) | 
					
						
						|  | print(tokens) | 
					
						
						|  | ids = tokenizer.convert_tokens_to_ids(tokens) | 
					
						
						|  | print(ids) | 
					
						
						|  | text2 = tokenizer.convert_tokens_to_string(tokens) | 
					
						
						|  | print(text2) | 
					
						
						|  | ids2 = tokenizer.convert_tokens_to_ids(tokens) | 
					
						
						|  |  |