teckmill commited on
Commit
f37436e
·
verified ·
1 Parent(s): f27fb61

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -31
README.md CHANGED
@@ -1,52 +1,128 @@
1
  ---
2
- library_name: transformers
3
- base_model: microsoft/CodeGPT-small-py
4
  tags:
5
- - generated_from_trainer
 
 
 
 
 
 
 
6
  model-index:
7
- - name: jaleah-ai-model
8
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
 
14
- # jaleah-ai-model
15
 
16
- This model is a fine-tuned version of [microsoft/CodeGPT-small-py](https://huggingface.co/microsoft/CodeGPT-small-py) on an unknown dataset.
17
 
18
- ## Model description
 
19
 
20
- More information needed
 
 
 
 
21
 
22
- ## Intended uses & limitations
23
 
24
- More information needed
 
25
 
26
- ## Training and evaluation data
 
 
 
 
27
 
28
- More information needed
29
 
30
- ## Training procedure
 
31
 
32
- ### Training hyperparameters
 
 
 
 
33
 
34
- The following hyperparameters were used during training:
35
- - learning_rate: 5e-05
36
- - train_batch_size: 4
37
- - eval_batch_size: 8
38
- - seed: 42
39
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
40
- - lr_scheduler_type: linear
41
- - num_epochs: 5
42
 
43
- ### Training results
 
 
 
 
44
 
 
 
 
 
 
45
 
 
46
 
47
- ### Framework versions
 
 
 
 
 
 
48
 
49
- - Transformers 4.47.1
50
- - Pytorch 2.5.1+cu121
51
- - Datasets 3.2.0
52
- - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - code
4
  tags:
5
+ - code-generation
6
+ - ai-assistant
7
+ - code-completion
8
+ - python
9
+ license: mit
10
+ datasets:
11
+ - github-code
12
+ - stackoverflow
13
  model-index:
14
+ - name: Jaleah AI Code Generator
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ name: Code Generation
19
+ dataset:
20
+ name: Python Code Corpus
21
+ type: generated
22
+ metrics:
23
+ - type: BLEU
24
+ value: experimental
25
+ - type: CodeBLEU
26
+ value: experimental
27
+ - type: perplexity
28
+ value: experimental
29
  ---
30
 
 
 
31
 
 
32
 
33
+ # Jaleah AI Code Generation Model
34
 
35
+ ## Model Description
36
+ Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains.
37
 
38
+ ### Model Details
39
+ - **Developed by:** TeckMill AI Research Team
40
+ - **Base Model:** microsoft/CodeGPT-small-py
41
+ - **Language:** Python
42
+ - **Version:** 1.0
43
 
44
+ # Jaleah AI Code Generation Model
45
 
46
+ ## Model Description
47
+ Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains.
48
 
49
+ ### Model Details
50
+ - **Developed by:** TeckMill AI Research Team
51
+ - **Base Model:** microsoft/CodeGPT-small-py
52
+ - **Language:** Python
53
+ - **Version:** 1.0
54
 
55
+ # Jaleah AI Code Generation Model
56
 
57
+ ## Model Description
58
+ Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains.
59
 
60
+ ### Model Details
61
+ - **Developed by:** TeckMill AI Research Team
62
+ - **Base Model:** microsoft/CodeGPT-small-py
63
+ - **Language:** Python
64
+ - **Version:** 1.0
65
 
66
+ ## Intended Uses & Limitations
 
 
 
 
 
 
 
67
 
68
+ ### Intended Uses
69
+ - Code snippet generation
70
+ - Assisting developers with Python programming
71
+ - Providing intelligent code suggestions
72
+ - Rapid prototyping of Python functions and classes
73
 
74
+ ### Limitations
75
+ - May generate syntactically incorrect code
76
+ - Requires human review and validation
77
+ - Performance may vary across different coding domains
78
+ - Not suitable for complete project generation
79
 
80
+ ## Training Data
81
 
82
+ ### Data Sources
83
+ The model was trained on a diverse dataset including:
84
+ - GitHub trending repositories
85
+ - Stack Overflow top-rated code answers
86
+ - Open-source Python project codebases
87
+ - Synthetic code generation
88
+ - Complex algorithmic implementations
89
 
90
+ ### Data Preprocessing
91
+ - Syntax validation
92
+ - Comment and docstring removal
93
+ - Length and complexity filtering
94
+
95
+ ## Training Procedure
96
+
97
+ ### Training Hyperparameters
98
+ - **Learning Rate:** 5e-05
99
+ - **Batch Size:** 4
100
+ - **Epochs:** 12
101
+ - **Optimizer:** AdamW
102
+ - **Learning Rate Scheduler:** Linear
103
+ - **Weight Decay:** 0.01
104
+
105
+ ### Training Process
106
+ - Fine-tuning of pre-trained CodeGPT model
107
+ - Multi-source code collection
108
+ - Advanced synthetic code generation
109
+ - Rigorous code validation
110
+
111
+ ## Evaluation
112
+ Detailed evaluation metrics to be added in future versions.
113
+
114
+ ## Ethical Considerations
115
+ - Designed to assist, not replace, human developers
116
+ - Encourages learning and code understanding
117
+
118
+ ## How to Use
119
+ ```python
120
+ from transformers import AutoModelForCausalLM, AutoTokenizer
121
+
122
+ model = AutoModelForCausalLM.from_pretrained("teckmill/jaleah-ai-model")
123
+ tokenizer = AutoTokenizer.from_pretrained("teckmill/jaleah-ai-model")
124
+
125
+ def generate_code(prompt, max_length=200):
126
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
127
+ output = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
128
+ return tokenizer.decode(output[0], skip_special_tokens=True)