Initial upload of Conditional-DETR signature detection model
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +26 -0
- README.md +354 -0
- best_checkpoint/config.json +61 -0
- best_checkpoint/model.safetensors +3 -0
- best_checkpoint/optimizer.pt +3 -0
- best_checkpoint/preprocessor_config.json +26 -0
- best_checkpoint/rng_state.pth +3 -0
- best_checkpoint/scheduler.pt +3 -0
- best_checkpoint/trainer_state.json +0 -0
- best_checkpoint/training_args.bin +3 -0
- config.json +61 -0
- eval/cpu/confusion_matrix.png +0 -0
- eval/cpu/inference_grid_0.png +3 -0
- eval/cpu/inference_grid_1.png +3 -0
- eval/cpu/inference_grid_10.png +3 -0
- eval/cpu/inference_grid_11.png +3 -0
- eval/cpu/inference_grid_12.png +0 -0
- eval/cpu/inference_grid_13.png +0 -0
- eval/cpu/inference_grid_14.png +0 -0
- eval/cpu/inference_grid_15.png +0 -0
- eval/cpu/inference_grid_16.png +3 -0
- eval/cpu/inference_grid_17.png +0 -0
- eval/cpu/inference_grid_18.png +0 -0
- eval/cpu/inference_grid_19.png +3 -0
- eval/cpu/inference_grid_2.png +3 -0
- eval/cpu/inference_grid_20.png +3 -0
- eval/cpu/inference_grid_21.png +0 -0
- eval/cpu/inference_grid_22.png +3 -0
- eval/cpu/inference_grid_23.png +3 -0
- eval/cpu/inference_grid_24.png +0 -0
- eval/cpu/inference_grid_3.png +0 -0
- eval/cpu/inference_grid_4.png +0 -0
- eval/cpu/inference_grid_5.png +3 -0
- eval/cpu/inference_grid_6.png +0 -0
- eval/cpu/inference_grid_7.png +0 -0
- eval/cpu/inference_grid_8.png +3 -0
- eval/cpu/inference_grid_9.png +3 -0
- eval/gpu/confusion_matrix.png +0 -0
- eval/gpu/inference_grid_0.png +3 -0
- eval/gpu/inference_grid_1.png +3 -0
- eval/gpu/inference_grid_10.png +3 -0
- eval/gpu/inference_grid_11.png +3 -0
- eval/gpu/inference_grid_12.png +0 -0
- eval/gpu/inference_grid_13.png +0 -0
- eval/gpu/inference_grid_14.png +0 -0
- eval/gpu/inference_grid_15.png +0 -0
- eval/gpu/inference_grid_16.png +3 -0
- eval/gpu/inference_grid_17.png +0 -0
- eval/gpu/inference_grid_18.png +0 -0
- eval/gpu/inference_grid_19.png +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,29 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
eval/cpu/inference_grid_0.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
eval/cpu/inference_grid_1.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
eval/cpu/inference_grid_10.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
eval/cpu/inference_grid_11.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
eval/cpu/inference_grid_16.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
eval/cpu/inference_grid_19.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
eval/cpu/inference_grid_2.png filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
eval/cpu/inference_grid_20.png filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
eval/cpu/inference_grid_22.png filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
eval/cpu/inference_grid_23.png filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
eval/cpu/inference_grid_5.png filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
eval/cpu/inference_grid_8.png filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
eval/cpu/inference_grid_9.png filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
eval/gpu/inference_grid_0.png filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
eval/gpu/inference_grid_1.png filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
eval/gpu/inference_grid_10.png filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
eval/gpu/inference_grid_11.png filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
eval/gpu/inference_grid_16.png filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
eval/gpu/inference_grid_19.png filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
eval/gpu/inference_grid_2.png filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
eval/gpu/inference_grid_20.png filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
eval/gpu/inference_grid_22.png filter=lfs diff=lfs merge=lfs -text
|
| 58 |
+
eval/gpu/inference_grid_23.png filter=lfs diff=lfs merge=lfs -text
|
| 59 |
+
eval/gpu/inference_grid_5.png filter=lfs diff=lfs merge=lfs -text
|
| 60 |
+
eval/gpu/inference_grid_8.png filter=lfs diff=lfs merge=lfs -text
|
| 61 |
+
eval/gpu/inference_grid_9.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model:
|
| 4 |
+
- microsoft/conditional-detr-resnet-50
|
| 5 |
+
pipeline_tag: object-detection
|
| 6 |
+
datasets:
|
| 7 |
+
- tech4humans/signature-detection
|
| 8 |
+
metrics:
|
| 9 |
+
- f1
|
| 10 |
+
- precision
|
| 11 |
+
- recall
|
| 12 |
+
library_name: transformers
|
| 13 |
+
inference: false
|
| 14 |
+
tags:
|
| 15 |
+
- object-detection
|
| 16 |
+
- signature-detection
|
| 17 |
+
- detr
|
| 18 |
+
- conditional-detr
|
| 19 |
+
- pytorch
|
| 20 |
+
model-index:
|
| 21 |
+
- name: tech4humans/conditional-detr-50-signature-detector
|
| 22 |
+
results:
|
| 23 |
+
- task:
|
| 24 |
+
type: object-detection
|
| 25 |
+
dataset:
|
| 26 |
+
type: tech4humans/signature-detection
|
| 27 |
+
name: tech4humans/signature-detection
|
| 28 |
+
split: test
|
| 29 |
+
metrics:
|
| 30 |
+
- type: precision
|
| 31 |
+
value: 0.936524
|
| 32 |
+
name: [email protected]
|
| 33 |
+
- type: precision
|
| 34 |
+
value: 0.653321
|
| 35 |
+
name: [email protected]:0.95
|
| 36 |
+
---
|
| 37 |
+
|
| 38 |
+
# **Conditional-DETR ResNet-50 - Handwritten Signature Detection**
|
| 39 |
+
|
| 40 |
+
This repository presents a Conditional-DETR model with ResNet-50 backbone, fine-tuned to detect handwritten signatures in document images. This model achieved the **highest [email protected] (93.65%)** among all tested architectures in our comprehensive evaluation.
|
| 41 |
+
|
| 42 |
+
| Resource | Links / Badges | Details |
|
| 43 |
+
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 44 |
+
| **Article** | [](https://huggingface.co/blog/samuellimabraz/signature-detection-model) | A detailed community article covering the full development process of the project |
|
| 45 |
+
| **Model Files (YOLOv8s)** | [](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Available formats:** [](https://pytorch.org/) [](https://onnx.ai/) [](https://developer.nvidia.com/tensorrt) |
|
| 46 |
+
| **Dataset – Original** | [](https://universe.roboflow.com/tech-ysdkk/signature-detection-hlx8j) | 2,819 document images annotated with signature coordinates |
|
| 47 |
+
| **Dataset – Processed** | [](https://huggingface.co/datasets/tech4humans/signature-detection) | Augmented and pre-processed version (640px) for model training |
|
| 48 |
+
| **Notebooks – Model Experiments** | [](https://colab.research.google.com/drive/1wSySw_zwyuv6XSaGmkngI4dwbj-hR4ix) [](https://api.wandb.ai/links/samuel-lima-tech4humans/30cmrkp8) | Complete training and evaluation pipeline with selection among different architectures (yolo, detr, rt-detr, conditional-detr, yolos) |
|
| 49 |
+
| **Notebooks – HP Tuning** | [](https://colab.research.google.com/drive/1wSySw_zwyuv6XSaGmkngI4dwbj-hR4ix) [](https://api.wandb.ai/links/samuel-lima-tech4humans/31a6zhb1) | Optuna trials for optimizing the precision/recall balance |
|
| 50 |
+
| **Inference Server** | [](https://github.com/tech4ai/t4ai-signature-detect-server) | Complete deployment and inference pipeline with Triton Inference Server<br> [](https://docs.openvino.ai/2025/index.html) [](https://www.docker.com/) [](https://developer.nvidia.com/triton-inference-server) |
|
| 51 |
+
| **Live Demo** | [](https://huggingface.co/spaces/tech4humans/signature-detection) | Graphical interface with real-time inference<br> [](https://www.gradio.app/) [](https://plotly.com/python/) |
|
| 52 |
+
|
| 53 |
+
---
|
| 54 |
+
|
| 55 |
+
---
|
| 56 |
+
|
| 57 |
+
## **Dataset**
|
| 58 |
+
|
| 59 |
+
<table>
|
| 60 |
+
<tr>
|
| 61 |
+
<td style="text-align: center; padding: 10px;">
|
| 62 |
+
<a href="https://universe.roboflow.com/tech-ysdkk/signature-detection-hlx8j">
|
| 63 |
+
<img src="https://app.roboflow.com/images/download-dataset-badge.svg">
|
| 64 |
+
</a>
|
| 65 |
+
</td>
|
| 66 |
+
<td style="text-align: center; padding: 10px;">
|
| 67 |
+
<a href="https://huggingface.co/datasets/tech4humans/signature-detection">
|
| 68 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" alt="Dataset on HF">
|
| 69 |
+
</a>
|
| 70 |
+
</td>
|
| 71 |
+
</tr>
|
| 72 |
+
</table>
|
| 73 |
+
The training utilized a dataset built from two public datasets: [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) and [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up), unified and processed in [Roboflow](https://roboflow.com/).
|
| 74 |
+
|
| 75 |
+
**Dataset Summary:**
|
| 76 |
+
- Training: 1,980 images (70%)
|
| 77 |
+
- Validation: 420 images (15%)
|
| 78 |
+
- Testing: 419 images (15%)
|
| 79 |
+
- Format: COCO JSON
|
| 80 |
+
- Resolution: 640x640 pixels
|
| 81 |
+
|
| 82 |
+

|
| 83 |
+
|
| 84 |
+
---
|
| 85 |
+
|
| 86 |
+
## **Training Process**
|
| 87 |
+
|
| 88 |
+
The training process involved the following steps:
|
| 89 |
+
|
| 90 |
+
### 1. **Model Selection:**
|
| 91 |
+
|
| 92 |
+
Various object detection models were evaluated to identify the best balance between precision, recall, and inference time.
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
| **Metric** | [rtdetr-l](https://github.com/ultralytics/assets/releases/download/v8.2.0/rtdetr-l.pt) | [yolos-base](https://huggingface.co/hustvl/yolos-base) | [yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) | [conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) | [detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) | [yolov8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt) | [yolov8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt) | [yolov8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt) | [yolov8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt) | [yolov8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt) | [yolo11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | [yolo11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | [yolo11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | [yolo11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | [yolo11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | [yolov10x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10x.pt) | [yolov10l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10l.pt) | [yolov10b](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10b.pt) | [yolov10m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10m.pt) | [yolov10s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10s.pt) | [yolov10n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10n.pt) |
|
| 96 |
+
|:---------------------|---------:|-----------:|-----------:|---------------------------:|---------------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|---------:|---------:|---------:|---------:|---------:|---------:|
|
| 97 |
+
| **Inference Time - CPU (ms)** | 583.608 | 1706.49 | 265.346 | 476.831 | 425.649 | 1259.47 | 871.329 | 401.183 | 216.6 | 110.442 | 1016.68 | 518.147 | 381.652 | 179.792 | 106.656 | 821.183 | 580.767 | 473.109 | 320.12 | 150.076 | **73.8596** |
|
| 98 |
+
| **mAP50** | 0.92709 | 0.901154 | 0.869814 | **0.936524** | 0.88885 | 0.794237| 0.800312| 0.875322| 0.874721| 0.816089| 0.667074| 0.707409| 0.809557| 0.835605| 0.813799| 0.681023| 0.726802| 0.789835| 0.787688| 0.663877| 0.734332 |
|
| 99 |
+
| **mAP50-95** | 0.622364 | 0.583569 | 0.469064 | 0.653321 | 0.579428 | 0.552919| 0.593976| **0.665495**| 0.65457 | 0.623963| 0.482289| 0.499126| 0.600797| 0.638849| 0.617496| 0.474535| 0.522654| 0.578874| 0.581259| 0.473857| 0.552704 |
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+

|
| 103 |
+
|
| 104 |
+
#### Highlights:
|
| 105 |
+
- **Best mAP50:** `conditional-detr-resnet-50` (**0.936524**)
|
| 106 |
+
- **Best mAP50-95:** `yolov8m` (**0.665495**)
|
| 107 |
+
- **Fastest Inference Time:** `yolov10n` (**73.8596 ms**)
|
| 108 |
+
|
| 109 |
+
Detailed experiments are available on [**Weights & Biases**](https://api.wandb.ai/links/samuel-lima-tech4humans/30cmrkp8).
|
| 110 |
+
|
| 111 |
+
### 2. **Hyperparameter Tuning:**
|
| 112 |
+
|
| 113 |
+
The YOLOv8s model, which demonstrated a good balance of inference time, precision, and recall, was selected for hyperparameter tuning.
|
| 114 |
+
|
| 115 |
+
[Optuna](https://optuna.org/) was used for 20 optimization trials.
|
| 116 |
+
The hyperparameter tuning used the following parameter configuration:
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
dropout = trial.suggest_float("dropout", 0.0, 0.5, step=0.1)
|
| 120 |
+
lr0 = trial.suggest_float("lr0", 1e-5, 1e-1, log=True)
|
| 121 |
+
box = trial.suggest_float("box", 3.0, 7.0, step=1.0)
|
| 122 |
+
cls = trial.suggest_float("cls", 0.5, 1.5, step=0.2)
|
| 123 |
+
opt = trial.suggest_categorical("optimizer", ["AdamW", "RMSProp"])
|
| 124 |
+
```
|
| 125 |
+
Results can be visualized here: [**Hypertuning Experiment**](https://api.wandb.ai/links/samuel-lima-tech4humans/31a6zhb1).
|
| 126 |
+
|
| 127 |
+

|
| 128 |
+
|
| 129 |
+
### 3. **Evaluation:**
|
| 130 |
+
|
| 131 |
+
The models were evaluated on the test set at the end of training in ONNX (CPU) and TensorRT (GPU - T4) formats. Performance metrics included precision, recall, mAP50, and mAP50-95.
|
| 132 |
+
|
| 133 |
+

|
| 134 |
+
|
| 135 |
+
#### Results Comparison:
|
| 136 |
+
|
| 137 |
+
| Metric | Base Model | Best Trial (#10) | Difference |
|
| 138 |
+
|------------|------------|-------------------|-------------|
|
| 139 |
+
| mAP50 | 87.47% | **95.75%** | +8.28% |
|
| 140 |
+
| mAP50-95 | 65.46% | **66.26%** | +0.81% |
|
| 141 |
+
| Precision | **97.23%** | 95.61% | -1.63% |
|
| 142 |
+
| Recall | 76.16% | **91.21%** | +15.05% |
|
| 143 |
+
| F1-score | 85.42% | **93.36%** | +7.94% |
|
| 144 |
+
|
| 145 |
+
---
|
| 146 |
+
|
| 147 |
+
## **Results**
|
| 148 |
+
|
| 149 |
+
After hyperparameter tuning of the YOLOv8s model, the best model achieved the following results on the test set:
|
| 150 |
+
|
| 151 |
+
- **Precision:** 94.74%
|
| 152 |
+
- **Recall:** 89.72%
|
| 153 |
+
- **mAP@50:** 94.50%
|
| 154 |
+
- **mAP@50-95:** 67.35%
|
| 155 |
+
- **Inference Time:**
|
| 156 |
+
- **ONNX Runtime (CPU):** 171.56 ms
|
| 157 |
+
- **TensorRT (GPU - T4):** 7.657 ms
|
| 158 |
+
|
| 159 |
+
---
|
| 160 |
+
|
| 161 |
+
## **How to Use**
|
| 162 |
+
|
| 163 |
+
### **Installation**
|
| 164 |
+
|
| 165 |
+
```bash
|
| 166 |
+
pip install transformers torch torchvision pillow
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
### **Inference**
|
| 170 |
+
|
| 171 |
+
```python
|
| 172 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
| 173 |
+
from PIL import Image
|
| 174 |
+
import torch
|
| 175 |
+
|
| 176 |
+
# Load model and processor
|
| 177 |
+
model_name = "tech4humans/conditional-detr-50-signature-detector"
|
| 178 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 179 |
+
model = AutoModelForObjectDetection.from_pretrained(model_name)
|
| 180 |
+
|
| 181 |
+
# Load and process image
|
| 182 |
+
image = Image.open("path/to/your/document.jpg")
|
| 183 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 184 |
+
|
| 185 |
+
# Run inference
|
| 186 |
+
with torch.no_grad():
|
| 187 |
+
outputs = model(**inputs)
|
| 188 |
+
|
| 189 |
+
# Post-process results
|
| 190 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
| 191 |
+
results = processor.post_process_object_detection(
|
| 192 |
+
outputs, target_sizes=target_sizes, threshold=0.5
|
| 193 |
+
)[0]
|
| 194 |
+
|
| 195 |
+
# Extract detections
|
| 196 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 197 |
+
box = [round(i, 2) for i in box.tolist()]
|
| 198 |
+
print(f"Detected signature with confidence {round(score.item(), 3)} at location {box}")
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
### **Visualization**
|
| 202 |
+
|
| 203 |
+
```python
|
| 204 |
+
import matplotlib.pyplot as plt
|
| 205 |
+
import matplotlib.patches as patches
|
| 206 |
+
from PIL import Image
|
| 207 |
+
|
| 208 |
+
def visualize_predictions(image_path, results, threshold=0.5):
|
| 209 |
+
image = Image.open(image_path)
|
| 210 |
+
fig, ax = plt.subplots(1, figsize=(12, 9))
|
| 211 |
+
ax.imshow(image)
|
| 212 |
+
|
| 213 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 214 |
+
if score > threshold:
|
| 215 |
+
x, y, x2, y2 = box.tolist()
|
| 216 |
+
width, height = x2 - x, y2 - y
|
| 217 |
+
|
| 218 |
+
rect = patches.Rectangle(
|
| 219 |
+
(x, y), width, height,
|
| 220 |
+
linewidth=2, edgecolor='red', facecolor='none'
|
| 221 |
+
)
|
| 222 |
+
ax.add_patch(rect)
|
| 223 |
+
ax.text(x, y-10, f'Signature: {score:.3f}',
|
| 224 |
+
bbox=dict(boxstyle="round,pad=0.3", facecolor="yellow", alpha=0.7))
|
| 225 |
+
|
| 226 |
+
ax.set_title("Signature Detection Results")
|
| 227 |
+
plt.axis('off')
|
| 228 |
+
plt.show()
|
| 229 |
+
|
| 230 |
+
# Use the visualization
|
| 231 |
+
visualize_predictions("path/to/your/document.jpg", results)
|
| 232 |
+
```
|
| 233 |
+
|
| 234 |
+
---
|
| 235 |
+
|
| 236 |
+
## **Demo**
|
| 237 |
+
|
| 238 |
+
You can explore the model and test real-time inference in the Hugging Face Spaces demo, built with Gradio and ONNXRuntime.
|
| 239 |
+
|
| 240 |
+
[](https://huggingface.co/spaces/tech4humans/signature-detection)
|
| 241 |
+
|
| 242 |
+
---
|
| 243 |
+
|
| 244 |
+
## 🔗 **Inference with Triton Server**
|
| 245 |
+
|
| 246 |
+
If you want to deploy this signature detection model in a production environment, check out our inference server repository based on the NVIDIA Triton Inference Server.
|
| 247 |
+
|
| 248 |
+
<table>
|
| 249 |
+
<tr>
|
| 250 |
+
<td>
|
| 251 |
+
<a href="https://github.com/triton-inference-server/server"><img src="https://img.shields.io/badge/Triton-Inference%20Server-76B900?style=for-the-badge&labelColor=black&logo=nvidia" alt="Triton Badge" /></a>
|
| 252 |
+
</td>
|
| 253 |
+
<td>
|
| 254 |
+
<a href="https://github.com/tech4ai/t4ai-signature-detect-server"><img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" alt="GitHub Badge" /></a>
|
| 255 |
+
</td>
|
| 256 |
+
</tr>
|
| 257 |
+
</table>
|
| 258 |
+
---
|
| 259 |
+
|
| 260 |
+
## **Infrastructure**
|
| 261 |
+
|
| 262 |
+
### Software
|
| 263 |
+
|
| 264 |
+
The model was trained and tuned using a Jupyter Notebook environment.
|
| 265 |
+
|
| 266 |
+
- **Operating System:** Ubuntu 22.04
|
| 267 |
+
- **Python:** 3.10.12
|
| 268 |
+
- **PyTorch:** 2.5.1+cu121
|
| 269 |
+
- **Ultralytics:** 8.3.58
|
| 270 |
+
- **Roboflow:** 1.1.50
|
| 271 |
+
- **Optuna:** 4.1.0
|
| 272 |
+
- **ONNX Runtime:** 1.20.1
|
| 273 |
+
- **TensorRT:** 10.7.0
|
| 274 |
+
|
| 275 |
+
### Hardware
|
| 276 |
+
|
| 277 |
+
Training was performed on a Google Cloud Platform n1-standard-8 instance with the following specifications:
|
| 278 |
+
|
| 279 |
+
- **CPU:** 8 vCPUs
|
| 280 |
+
- **GPU:** NVIDIA Tesla T4
|
| 281 |
+
|
| 282 |
+
---
|
| 283 |
+
|
| 284 |
+
## **License**
|
| 285 |
+
|
| 286 |
+
### Model Weights, Code and Training Materials – **Apache 2.0**
|
| 287 |
+
- **License:** Apache License 2.0
|
| 288 |
+
- **Usage:** All training scripts, deployment code, and usage instructions are licensed under the Apache 2.0 license.
|
| 289 |
+
|
| 290 |
+
---
|
| 291 |
+
|
| 292 |
+
## **Citation**
|
| 293 |
+
|
| 294 |
+
If you use this model in your research, please cite:
|
| 295 |
+
|
| 296 |
+
```bibtex
|
| 297 |
+
@misc{lima2024conditional-detr-signature-detection,
|
| 298 |
+
title={Conditional-DETR for Handwritten Signature Detection},
|
| 299 |
+
author={Lima, Samuel and Tech4Humans Team},
|
| 300 |
+
year={2024},
|
| 301 |
+
publisher={Hugging Face},
|
| 302 |
+
url={https://huggingface.co/tech4humans/conditional-detr-50-signature-detector}
|
| 303 |
+
}
|
| 304 |
+
```
|
| 305 |
+
|
| 306 |
+
---
|
| 307 |
+
|
| 308 |
+
## **Contact and Information**
|
| 309 |
+
|
| 310 |
+
For further information, questions, or contributions, contact us at **[email protected]**.
|
| 311 |
+
|
| 312 |
+
<div align="center">
|
| 313 |
+
<p>
|
| 314 |
+
📧 <b>Email:</b> <a href="mailto:[email protected]">[email protected]</a><br>
|
| 315 |
+
🌐 <b>Website:</b> <a href="https://www.tech4.ai/">www.tech4.ai</a><br>
|
| 316 |
+
💼 <b>LinkedIn:</b> <a href="https://www.linkedin.com/company/tech4humans-hyperautomation/">Tech4Humans</a>
|
| 317 |
+
</p>
|
| 318 |
+
</div>
|
| 319 |
+
|
| 320 |
+
## **Author**
|
| 321 |
+
|
| 322 |
+
<div align="center">
|
| 323 |
+
<table>
|
| 324 |
+
<tr>
|
| 325 |
+
<td align="center" width="140">
|
| 326 |
+
<a href="https://huggingface.co/samuellimabraz">
|
| 327 |
+
<img src="https://avatars.githubusercontent.com/u/115582014?s=400&u=c149baf46c51fdee45ad5344cf1b360236d90d09&v=4" width="120" alt="Samuel Lima"/>
|
| 328 |
+
<h3>Samuel Lima</h3>
|
| 329 |
+
</a>
|
| 330 |
+
<p><i>AI Research Engineer</i></p>
|
| 331 |
+
<p>
|
| 332 |
+
<a href="https://huggingface.co/samuellimabraz">
|
| 333 |
+
<img src="https://img.shields.io/badge/🤗_HuggingFace-samuellimabraz-orange" alt="HuggingFace"/>
|
| 334 |
+
</a>
|
| 335 |
+
</p>
|
| 336 |
+
</td>
|
| 337 |
+
<td width="500">
|
| 338 |
+
<h4>Responsibilities in this Project</h4>
|
| 339 |
+
<ul>
|
| 340 |
+
<li>🔬 Model development and training</li>
|
| 341 |
+
<li>📊 Dataset analysis and processing</li>
|
| 342 |
+
<li>⚙️ Architecture selection and performance evaluation</li>
|
| 343 |
+
<li>📝 Technical documentation and model card</li>
|
| 344 |
+
</ul>
|
| 345 |
+
</td>
|
| 346 |
+
</tr>
|
| 347 |
+
</table>
|
| 348 |
+
</div>
|
| 349 |
+
|
| 350 |
+
---
|
| 351 |
+
|
| 352 |
+
<div align="center">
|
| 353 |
+
<p>Developed with 💜 by <a href="https://www.tech4.ai/">Tech4Humans</a></p>
|
| 354 |
+
</div>
|
best_checkpoint/config.json
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "microsoft/conditional-detr-resnet-50",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"activation_function": "relu",
|
| 5 |
+
"architectures": [
|
| 6 |
+
"ConditionalDetrForObjectDetection"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"auxiliary_loss": false,
|
| 10 |
+
"backbone": "resnet50",
|
| 11 |
+
"backbone_config": null,
|
| 12 |
+
"backbone_kwargs": {
|
| 13 |
+
"in_chans": 3,
|
| 14 |
+
"out_indices": [
|
| 15 |
+
1,
|
| 16 |
+
2,
|
| 17 |
+
3,
|
| 18 |
+
4
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
"bbox_cost": 5,
|
| 22 |
+
"bbox_loss_coefficient": 5,
|
| 23 |
+
"class_cost": 2,
|
| 24 |
+
"cls_loss_coefficient": 2,
|
| 25 |
+
"d_model": 256,
|
| 26 |
+
"decoder_attention_heads": 8,
|
| 27 |
+
"decoder_ffn_dim": 2048,
|
| 28 |
+
"decoder_layerdrop": 0.0,
|
| 29 |
+
"decoder_layers": 6,
|
| 30 |
+
"dice_loss_coefficient": 1,
|
| 31 |
+
"dilation": false,
|
| 32 |
+
"dropout": 0.1,
|
| 33 |
+
"encoder_attention_heads": 8,
|
| 34 |
+
"encoder_ffn_dim": 2048,
|
| 35 |
+
"encoder_layerdrop": 0.0,
|
| 36 |
+
"encoder_layers": 6,
|
| 37 |
+
"focal_alpha": 0.25,
|
| 38 |
+
"giou_cost": 2,
|
| 39 |
+
"giou_loss_coefficient": 2,
|
| 40 |
+
"id2label": {
|
| 41 |
+
"0": "signature"
|
| 42 |
+
},
|
| 43 |
+
"init_std": 0.02,
|
| 44 |
+
"init_xavier_std": 1.0,
|
| 45 |
+
"is_encoder_decoder": true,
|
| 46 |
+
"label2id": {
|
| 47 |
+
"signature": 0
|
| 48 |
+
},
|
| 49 |
+
"mask_loss_coefficient": 1,
|
| 50 |
+
"max_position_embeddings": 1024,
|
| 51 |
+
"model_type": "conditional_detr",
|
| 52 |
+
"num_channels": 3,
|
| 53 |
+
"num_hidden_layers": 6,
|
| 54 |
+
"num_queries": 300,
|
| 55 |
+
"position_embedding_type": "sine",
|
| 56 |
+
"scale_embedding": false,
|
| 57 |
+
"torch_dtype": "float32",
|
| 58 |
+
"transformers_version": "4.46.3",
|
| 59 |
+
"use_pretrained_backbone": true,
|
| 60 |
+
"use_timm_backbone": true
|
| 61 |
+
}
|
best_checkpoint/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b804b3797a81dbaa7f803c93ddff884acb321b10f3ad2520861b378e72cb3ef
|
| 3 |
+
size 174075684
|
best_checkpoint/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60667f62d23d0156209d0db0cd48fc1bf1aaaabf2f564a2cf22aa304543eecd0
|
| 3 |
+
size 345689625
|
best_checkpoint/preprocessor_config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_convert_annotations": true,
|
| 3 |
+
"do_normalize": true,
|
| 4 |
+
"do_pad": true,
|
| 5 |
+
"do_rescale": true,
|
| 6 |
+
"do_resize": true,
|
| 7 |
+
"format": "coco_detection",
|
| 8 |
+
"image_mean": [
|
| 9 |
+
0.485,
|
| 10 |
+
0.456,
|
| 11 |
+
0.406
|
| 12 |
+
],
|
| 13 |
+
"image_processor_type": "ConditionalDetrImageProcessor",
|
| 14 |
+
"image_std": [
|
| 15 |
+
0.229,
|
| 16 |
+
0.224,
|
| 17 |
+
0.225
|
| 18 |
+
],
|
| 19 |
+
"pad_size": null,
|
| 20 |
+
"resample": 2,
|
| 21 |
+
"rescale_factor": 0.00392156862745098,
|
| 22 |
+
"size": {
|
| 23 |
+
"height": 640,
|
| 24 |
+
"width": 640
|
| 25 |
+
}
|
| 26 |
+
}
|
best_checkpoint/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:672f61b91e1dc0ec0cfc7cc6bea9c0630fa1b53fe3a606869eead6061469864c
|
| 3 |
+
size 14244
|
best_checkpoint/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:73201c99891272e8d20ef63730f93b9b956d012d7aefe414a361a43f9b574909
|
| 3 |
+
size 1064
|
best_checkpoint/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
best_checkpoint/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3706f9f79f5744209c871ccf9fbee60fa5a8e284a17427199064284853941395
|
| 3 |
+
size 5496
|
config.json
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "microsoft/conditional-detr-resnet-50",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"activation_function": "relu",
|
| 5 |
+
"architectures": [
|
| 6 |
+
"ConditionalDetrForObjectDetection"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"auxiliary_loss": false,
|
| 10 |
+
"backbone": "resnet50",
|
| 11 |
+
"backbone_config": null,
|
| 12 |
+
"backbone_kwargs": {
|
| 13 |
+
"in_chans": 3,
|
| 14 |
+
"out_indices": [
|
| 15 |
+
1,
|
| 16 |
+
2,
|
| 17 |
+
3,
|
| 18 |
+
4
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
"bbox_cost": 5,
|
| 22 |
+
"bbox_loss_coefficient": 5,
|
| 23 |
+
"class_cost": 2,
|
| 24 |
+
"cls_loss_coefficient": 2,
|
| 25 |
+
"d_model": 256,
|
| 26 |
+
"decoder_attention_heads": 8,
|
| 27 |
+
"decoder_ffn_dim": 2048,
|
| 28 |
+
"decoder_layerdrop": 0.0,
|
| 29 |
+
"decoder_layers": 6,
|
| 30 |
+
"dice_loss_coefficient": 1,
|
| 31 |
+
"dilation": false,
|
| 32 |
+
"dropout": 0.1,
|
| 33 |
+
"encoder_attention_heads": 8,
|
| 34 |
+
"encoder_ffn_dim": 2048,
|
| 35 |
+
"encoder_layerdrop": 0.0,
|
| 36 |
+
"encoder_layers": 6,
|
| 37 |
+
"focal_alpha": 0.25,
|
| 38 |
+
"giou_cost": 2,
|
| 39 |
+
"giou_loss_coefficient": 2,
|
| 40 |
+
"id2label": {
|
| 41 |
+
"0": "signature"
|
| 42 |
+
},
|
| 43 |
+
"init_std": 0.02,
|
| 44 |
+
"init_xavier_std": 1.0,
|
| 45 |
+
"is_encoder_decoder": true,
|
| 46 |
+
"label2id": {
|
| 47 |
+
"signature": 0
|
| 48 |
+
},
|
| 49 |
+
"mask_loss_coefficient": 1,
|
| 50 |
+
"max_position_embeddings": 1024,
|
| 51 |
+
"model_type": "conditional_detr",
|
| 52 |
+
"num_channels": 3,
|
| 53 |
+
"num_hidden_layers": 6,
|
| 54 |
+
"num_queries": 300,
|
| 55 |
+
"position_embedding_type": "sine",
|
| 56 |
+
"scale_embedding": false,
|
| 57 |
+
"torch_dtype": "float32",
|
| 58 |
+
"transformers_version": "4.46.3",
|
| 59 |
+
"use_pretrained_backbone": true,
|
| 60 |
+
"use_timm_backbone": true
|
| 61 |
+
}
|
eval/cpu/confusion_matrix.png
ADDED
|
eval/cpu/inference_grid_0.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_1.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_10.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_11.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_12.png
ADDED
|
eval/cpu/inference_grid_13.png
ADDED
|
eval/cpu/inference_grid_14.png
ADDED
|
eval/cpu/inference_grid_15.png
ADDED
|
eval/cpu/inference_grid_16.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_17.png
ADDED
|
eval/cpu/inference_grid_18.png
ADDED
|
eval/cpu/inference_grid_19.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_2.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_20.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_21.png
ADDED
|
eval/cpu/inference_grid_22.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_23.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_24.png
ADDED
|
eval/cpu/inference_grid_3.png
ADDED
|
eval/cpu/inference_grid_4.png
ADDED
|
eval/cpu/inference_grid_5.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_6.png
ADDED
|
eval/cpu/inference_grid_7.png
ADDED
|
eval/cpu/inference_grid_8.png
ADDED
|
Git LFS Details
|
eval/cpu/inference_grid_9.png
ADDED
|
Git LFS Details
|
eval/gpu/confusion_matrix.png
ADDED
|
eval/gpu/inference_grid_0.png
ADDED
|
Git LFS Details
|
eval/gpu/inference_grid_1.png
ADDED
|
Git LFS Details
|
eval/gpu/inference_grid_10.png
ADDED
|
Git LFS Details
|
eval/gpu/inference_grid_11.png
ADDED
|
Git LFS Details
|
eval/gpu/inference_grid_12.png
ADDED
|
eval/gpu/inference_grid_13.png
ADDED
|
eval/gpu/inference_grid_14.png
ADDED
|
eval/gpu/inference_grid_15.png
ADDED
|
eval/gpu/inference_grid_16.png
ADDED
|
Git LFS Details
|
eval/gpu/inference_grid_17.png
ADDED
|
eval/gpu/inference_grid_18.png
ADDED
|
eval/gpu/inference_grid_19.png
ADDED
|
Git LFS Details
|