File size: 21,378 Bytes
cd10f0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import gradio as gr
import json
import random
from datetime import datetime
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go

# Simulated database for demo purposes
USERS_DB = {}
PROGRESS_DB = {}

# Course curriculum structure
CURRICULUM = {
    "beginner": {
        "title": "AI Foundations to Agent Builder",
        "duration": "80-100 hours",
        "modules": [
            {"name": "Introduction to AI and Agents", "duration": "5 hours"},
            {"name": "Understanding Language Models", "duration": "8 hours"},
            {"name": "Basic Prompt Engineering", "duration": "10 hours"},
            {"name": "No-Code Agent Building", "duration": "15 hours"},
            {"name": "Business Applications", "duration": "12 hours"},
            {"name": "First Agent Project", "duration": "20 hours"},
            {"name": "Deployment Basics", "duration": "10 hours"},
            {"name": "Career Preparation", "duration": "10 hours"}
        ]
    },
    "intermediate": {
        "title": "Agent Developer Professional",
        "duration": "120-150 hours",
        "modules": [
            {"name": "Advanced Prompt Engineering", "duration": "15 hours"},
            {"name": "Python for AI Agents", "duration": "20 hours"},
            {"name": "LangChain Fundamentals", "duration": "15 hours"},
            {"name": "Multi-Provider Integration", "duration": "20 hours"},
            {"name": "Memory and Context Management", "duration": "15 hours"},
            {"name": "Tool Creation and Integration", "duration": "20 hours"},
            {"name": "Production Deployment", "duration": "15 hours"},
            {"name": "Advanced Projects", "duration": "30 hours"}
        ]
    },
    "advanced": {
        "title": "Enterprise AI Architect",
        "duration": "180-220 hours",
        "modules": [
            {"name": "Multi-Agent Systems Design", "duration": "25 hours"},
            {"name": "Custom Framework Development", "duration": "30 hours"},
            {"name": "Scalable Architecture Patterns", "duration": "20 hours"},
            {"name": "Security and Compliance", "duration": "15 hours"},
            {"name": "Performance Optimization", "duration": "20 hours"},
            {"name": "Industry Specialization", "duration": "30 hours"},
            {"name": "Enterprise Integration", "duration": "25 hours"},
            {"name": "Capstone Project", "duration": "35 hours"}
        ]
    }
}

# Sample agent templates
AGENT_TEMPLATES = {
    "customer_service": {
        "name": "Customer Service Pro",
        "description": "Handle customer inquiries with empathy and efficiency",
        "code": """# Customer Service Agent
agent = AgentBuilder(
    name="CustomerServicePro",
    model="gpt-4",
    system_prompt=\"\"\"You are a helpful customer service agent.
    Be empathetic, solution-focused, and professional.
    Always try to resolve issues on first contact.\"\"\",
    tools=["order_lookup", "refund_process", "ticket_create"],
    memory_type="conversation",
    max_tokens=150
)

# Example usage
response = agent.process("I haven't received my order #12345")
print(response)"""
    },
    "data_analyst": {
        "name": "Data Analyst Agent",
        "description": "Automated data analysis and visualization",
        "code": """# Data Analysis Agent
analyst = DataAnalystAgent(
    name="DataInsightsPro",
    model="gpt-4",
    capabilities={
        "data_sources": ["csv", "sql", "api"],
        "analysis_types": ["descriptive", "predictive", "prescriptive"],
        "visualizations": ["charts", "dashboards", "reports"]
    },
    auto_insights=True
)

# Analyze sales data
insights = analyst.analyze("sales_data.csv", 
    questions=["What are the top performing products?",
               "Identify seasonal trends",
               "Predict next quarter revenue"])"""
    },
    "content_creator": {
        "name": "Content Creator Agent",
        "description": "Generate engaging content for multiple platforms",
        "code": """# Content Creation Agent
creator = ContentAgent(
    name="ContentGenius",
    model="claude-3-opus",
    style_guide={
        "tone": "professional yet engaging",
        "format": "SEO-optimized",
        "platforms": ["blog", "social", "email"]
    },
    fact_checking=True
)

# Generate blog post
post = creator.create(
    type="blog_post",
    topic="The Future of AI Agents",
    keywords=["AI agents", "automation", "future of work"],
    length=1000
)"""
    }
}

def create_header():
    return """
    <div style="text-align: center; padding: 20px;">
        <h1 style="color: #6366f1; font-size: 3em; margin-bottom: 10px;">🎓 AgenticAI Academy</h1>
        <p style="font-size: 1.2em; color: #666;">Master AI Agent Development • From Beginner to Expert</p>
        <p style="margin-top: 20px;">
            <span style="background: #e0f2fe; color: #0369a1; padding: 5px 15px; border-radius: 20px; margin: 0 5px;">$32B Market by 2030</span>
            <span style="background: #fef3c7; color: #d97706; padding: 5px 15px; border-radius: 20px; margin: 0 5px;">31.2% Annual Growth</span>
            <span style="background: #fce7f3; color: #be185d; padding: 5px 15px; border-radius: 20px; margin: 0 5px;">$100K-250K+ Salaries</span>
        </p>
    </div>
    """

def register_user(name, email, experience_level, learning_goal):
    """Register a new user"""
    if email in USERS_DB:
        return "❌ Email already registered. Please login instead."
    
    USERS_DB[email] = {
        "name": name,
        "experience_level": experience_level,
        "learning_goal": learning_goal,
        "registered": datetime.now().isoformat(),
        "path": "beginner" if experience_level == "No coding experience" else "intermediate"
    }
    
    PROGRESS_DB[email] = {
        "completed_modules": [],
        "current_module": 0,
        "total_hours": 0,
        "projects": []
    }
    
    return f"✅ Welcome to AgenticAI Academy, {name}! Your {USERS_DB[email]['path']} learning path is ready."

def get_personalized_curriculum(email):
    """Get personalized curriculum based on user profile"""
    if email not in USERS_DB:
        return "Please register first to see your personalized curriculum."
    
    user = USERS_DB[email]
    path = user["path"]
    curriculum = CURRICULUM[path]
    
    progress = PROGRESS_DB.get(email, {})
    completed = len(progress.get("completed_modules", []))
    
    output = f"## 📚 Your Learning Path: {curriculum['title']}\n\n"
    output += f"**Total Duration:** {curriculum['duration']}\n"
    output += f"**Progress:** {completed}/{len(curriculum['modules'])} modules completed\n\n"
    
    output += "### Modules:\n"
    for i, module in enumerate(curriculum['modules']):
        status = "✅" if i < completed else "⏳"
        output += f"{i+1}. {status} **{module['name']}** ({module['duration']})\n"
    
    return output

def generate_agent_code(agent_type, use_case, model_choice, include_memory, include_tools):
    """Generate custom agent code based on parameters"""
    template = AGENT_TEMPLATES.get(agent_type, AGENT_TEMPLATES["customer_service"])
    
    code = f"""# Generated {agent_type.replace('_', ' ').title()} Agent
# Use case: {use_case}

from agenticai import AgentBuilder, MemoryStore, ToolRegistry

# Initialize agent
agent = AgentBuilder(
    name="{agent_type}_agent",
    model="{model_choice}",
    temperature=0.7
)

# Configure system prompt
agent.set_system_prompt(\"\"\"
{template['description']}
Specific use case: {use_case}
\"\"\")
"""
    
    if include_memory:
        code += """
# Add memory capabilities
agent.add_memory(
    type="long_term",
    store=MemoryStore(
        vector_db="pinecone",
        embedding_model="text-embedding-ada-002"
    )
)
"""
    
    if include_tools:
        code += """
# Add tools
agent.add_tools([
    "web_search",
    "calculator", 
    "code_executor",
    "file_handler"
])
"""
    
    code += """
# Example usage
response = agent.process("Your query here")
print(response)

# Deploy agent
# agent.deploy(endpoint="/api/agent", port=8080)
"""
    
    return code

def create_progress_visualization(email):
    """Create visual progress chart"""
    if email not in PROGRESS_DB:
        return None
    
    progress = PROGRESS_DB[email]
    user = USERS_DB.get(email, {})
    path = user.get("path", "beginner")
    curriculum = CURRICULUM[path]
    
    # Create progress data
    modules = [m["name"] for m in curriculum["modules"]]
    completed = progress.get("completed_modules", [])
    status = ["Completed" if i < len(completed) else "Pending" for i in range(len(modules))]
    hours = [m["duration"].split()[0] for m in curriculum["modules"]]
    
    # Create DataFrame
    df = pd.DataFrame({
        "Module": modules,
        "Status": status,
        "Hours": [int(h) for h in hours]
    })
    
    # Create Plotly figure
    fig = px.bar(df, x="Hours", y="Module", orientation='h', color="Status",
                 color_discrete_map={"Completed": "#10b981", "Pending": "#e5e7eb"},
                 title="Your Learning Progress")
    
    fig.update_layout(
        showlegend=False,
        xaxis_title="Duration (hours)",
        yaxis_title="",
        height=400
    )
    
    return fig

def simulate_agent_conversation(agent_type, user_input):
    """Simulate agent responses"""
    responses = {
        "customer_service": [
            "I understand your concern. Let me look into that for you right away.",
            "I've found your order #12345. It's currently in transit and should arrive within 2 days.",
            "I apologize for the inconvenience. I'm processing a full refund for you now.",
            "Is there anything else I can help you with today?"
        ],
        "data_analyst": [
            "I've analyzed your data and found some interesting patterns.",
            "The top performing category shows 34% growth month-over-month.",
            "Based on historical trends, I predict a 15% increase in Q2.",
            "I've created a visualization to better illustrate these insights."
        ],
        "content_creator": [
            "I've drafted an engaging blog post optimized for your keywords.",
            "The content includes relevant statistics and expert insights.",
            "I've structured it with SEO-friendly headers and meta descriptions.",
            "Would you like me to adjust the tone or add more sections?"
        ]
    }
    
    # Simulate processing
    agent_responses = responses.get(agent_type, responses["customer_service"])
    response = random.choice(agent_responses)
    
    return f"**Agent Response:** {response}\n\n*This is a simulated response. In the full course, you'll build real agents that connect to actual AI models.*"

def create_market_stats():
    """Create market statistics visualization"""
    # Market growth data
    years = list(range(2024, 2031))
    market_size = [5.88, 7.73, 10.16, 13.36, 17.57, 23.11, 30.39]
    
    fig = go.Figure()
    
    fig.add_trace(go.Scatter(
        x=years,
        y=market_size,
        mode='lines+markers',
        name='Market Size',
        line=dict(color='#6366f1', width=3),
        marker=dict(size=8)
    ))
    
    fig.update_layout(
        title="AI Education Market Growth (Billions USD)",
        xaxis_title="Year",
        yaxis_title="Market Size (Billions)",
        showlegend=False,
        height=400
    )
    
    return fig

# Create Gradio interface
with gr.Blocks(title="AgenticAI Academy", theme=gr.themes.Base()) as app:
    gr.HTML(create_header())
    
    with gr.Tabs():
        # Registration Tab
        with gr.TabItem("🚀 Get Started"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("""
                    ### Start Your AI Agent Development Journey
                    
                    Join thousands of professionals learning to build production-ready AI agents.
                    Our hands-on curriculum takes you from beginner to expert, with real projects
                    and industry certifications.
                    """)
                    
                    name_input = gr.Textbox(label="Full Name", placeholder="John Doe")
                    email_input = gr.Textbox(label="Email", placeholder="[email protected]")
                    experience_level = gr.Radio(
                        label="Current Experience Level",
                        choices=["No coding experience", "Some programming knowledge", "Experienced developer"],
                        value="No coding experience"
                    )
                    learning_goal = gr.Dropdown(
                        label="Primary Learning Goal",
                        choices=[
                            "Career transition to AI",
                            "Add AI skills to current role",
                            "Build AI products/startups",
                            "Enterprise AI implementation"
                        ],
                        value="Career transition to AI"
                    )
                    
                    register_btn = gr.Button("Start Free Trial", variant="primary", size="lg")
                    registration_output = gr.Textbox(label="Registration Status", lines=2)
                    
                with gr.Column():
                    gr.Markdown("""
                    ### 📊 Market Opportunity
                    
                    The AI education market is experiencing explosive growth, creating unprecedented
                    opportunities for skilled professionals.
                    """)
                    market_chart = gr.Plot(value=create_market_stats())
                    
                    gr.Markdown("""
                    ### 💰 Earning Potential
                    - **Freelance:** $50-500/hour
                    - **Full-time:** $100K-250K+ annually
                    - **Consulting:** $1,000-5,000/day
                    - **Products:** Unlimited scaling potential
                    """)
            
            register_btn.click(
                register_user,
                inputs=[name_input, email_input, experience_level, learning_goal],
                outputs=registration_output
            )
        
        # Curriculum Tab
        with gr.TabItem("📚 Curriculum"):
            with gr.Row():
                with gr.Column(scale=1):
                    curriculum_email = gr.Textbox(
                        label="Enter your email to see personalized curriculum",
                        placeholder="[email protected]"
                    )
                    show_curriculum_btn = gr.Button("Show My Curriculum", variant="primary")
                    
                with gr.Column(scale=2):
                    curriculum_output = gr.Markdown()
                    progress_chart = gr.Plot()
            
            show_curriculum_btn.click(
                get_personalized_curriculum,
                inputs=[curriculum_email],
                outputs=curriculum_output
            ).then(
                create_progress_visualization,
                inputs=[curriculum_email],
                outputs=progress_chart
            )
            
            gr.Markdown("""
            ### 🎓 Available Learning Paths
            
            #### Beginner Path: AI Foundations to Agent Builder (80-100 hours)
            Perfect for non-technical professionals. Learn to build AI agents using visual tools
            and no-code platforms. Focus on business applications and practical implementation.
            
            #### Intermediate Path: Agent Developer Professional (120-150 hours)
            For developers ready to add AI to their toolkit. Master Python-based agent development,
            advanced prompt engineering, and multi-provider integration.
            
            #### Advanced Path: Enterprise AI Architect (180-220 hours)
            Design and deploy complex multi-agent systems. Learn scalable architectures,
            security best practices, and industry-specific solutions.
            """)
        
        # Agent Builder Tab
        with gr.TabItem("🔧 Agent Builder"):
            gr.Markdown("""
            ### Build Your Custom AI Agent
            
            Use our code generator to create a starting template for your AI agent.
            In the full course, you'll learn to build and deploy these agents with real AI models.
            """)
            
            with gr.Row():
                with gr.Column():
                    agent_type = gr.Dropdown(
                        label="Agent Type",
                        choices=["customer_service", "data_analyst", "content_creator"],
                        value="customer_service"
                    )
                    use_case = gr.Textbox(
                        label="Specific Use Case",
                        placeholder="E.g., E-commerce support, Financial analysis, Blog writing"
                    )
                    model_choice = gr.Dropdown(
                        label="AI Model",
                        choices=["gpt-4", "gpt-3.5-turbo", "claude-3-opus", "gemini-pro"],
                        value="gpt-4"
                    )
                    include_memory = gr.Checkbox(label="Include Memory System", value=True)
                    include_tools = gr.Checkbox(label="Include External Tools", value=True)
                    
                    generate_btn = gr.Button("Generate Agent Code", variant="primary")
                
                with gr.Column():
                    code_output = gr.Code(label="Generated Agent Code", language="python")
            
            generate_btn.click(
                generate_agent_code,
                inputs=[agent_type, use_case, model_choice, include_memory, include_tools],
                outputs=code_output
            )
        
        # Interactive Demo Tab
        with gr.TabItem("🤖 Try an Agent"):
            gr.Markdown("""
            ### Interactive Agent Demo
            
            Experience what AI agents can do. This is a simulation - in the course,
            you'll build real agents that connect to actual AI models.
            """)
            
            with gr.Row():
                with gr.Column():
                    demo_agent_type = gr.Radio(
                        label="Select Agent Type",
                        choices=["customer_service", "data_analyst", "content_creator"],
                        value="customer_service"
                    )
                    user_input = gr.Textbox(
                        label="Your Message",
                        placeholder="Type your message to the agent...",
                        lines=3
                    )
                    send_btn = gr.Button("Send Message", variant="primary")
                
                with gr.Column():
                    agent_response = gr.Markdown(label="Agent Response")
            
            send_btn.click(
                simulate_agent_conversation,
                inputs=[demo_agent_type, user_input],
                outputs=agent_response
            )
        
        # Resources Tab
        with gr.TabItem("📖 Resources"):
            gr.Markdown("""
            ### 🎯 Free Resources to Get Started
            
            #### 📺 Video Tutorials
            - [Introduction to AI Agents](https://youtube.com/agenticai) (30 min)
            - [Your First Prompt Engineering](https://youtube.com/agenticai) (45 min)
            - [Building with No-Code Tools](https://youtube.com/agenticai) (60 min)
            
            #### 📄 Documentation
            - [AI Agent Fundamentals Guide](https://docs.agenticai.academy)
            - [Prompt Engineering Best Practices](https://docs.agenticai.academy/prompts)
            - [API Integration Handbook](https://docs.agenticai.academy/apis)
            
            #### 💬 Community
            - [Discord Server](https://discord.gg/agenticai) - 5,000+ members
            - [GitHub Repository](https://github.com/agenticai-academy)
            - [LinkedIn Group](https://linkedin.com/groups/agenticai)
            
            #### 🏆 Success Stories
            - **Sarah M.**: Marketing Manager → AI Consultant ($150K → $225K)
            - **James L.**: Developer → AI Agency Owner ($30K/month revenue)
            - **Tech Corp**: Trained 50 developers, saved $2M through automation
            
            #### 🎓 Certifications
            1. **Certified AI Agent Practitioner** - Entry level certification
            2. **Certified AI Agent Developer** - Professional certification
            3. **Certified Enterprise AI Architect** - Advanced certification
            
            #### 💰 Pricing
            - **Starter**: $35/month - Core curriculum access
            - **Professional**: $60/month - Full features + certification
            - **Enterprise**: Custom pricing - Team features + support
            
            ### 📞 Contact
            - Email: [email protected]
            - Schedule Demo: [Book a Call](https://calendly.com/agenticai)
            """)

# Launch the app
if __name__ == "__main__":
    app.launch()