File size: 21,378 Bytes
cd10f0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
import gradio as gr
import json
import random
from datetime import datetime
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
# Simulated database for demo purposes
USERS_DB = {}
PROGRESS_DB = {}
# Course curriculum structure
CURRICULUM = {
"beginner": {
"title": "AI Foundations to Agent Builder",
"duration": "80-100 hours",
"modules": [
{"name": "Introduction to AI and Agents", "duration": "5 hours"},
{"name": "Understanding Language Models", "duration": "8 hours"},
{"name": "Basic Prompt Engineering", "duration": "10 hours"},
{"name": "No-Code Agent Building", "duration": "15 hours"},
{"name": "Business Applications", "duration": "12 hours"},
{"name": "First Agent Project", "duration": "20 hours"},
{"name": "Deployment Basics", "duration": "10 hours"},
{"name": "Career Preparation", "duration": "10 hours"}
]
},
"intermediate": {
"title": "Agent Developer Professional",
"duration": "120-150 hours",
"modules": [
{"name": "Advanced Prompt Engineering", "duration": "15 hours"},
{"name": "Python for AI Agents", "duration": "20 hours"},
{"name": "LangChain Fundamentals", "duration": "15 hours"},
{"name": "Multi-Provider Integration", "duration": "20 hours"},
{"name": "Memory and Context Management", "duration": "15 hours"},
{"name": "Tool Creation and Integration", "duration": "20 hours"},
{"name": "Production Deployment", "duration": "15 hours"},
{"name": "Advanced Projects", "duration": "30 hours"}
]
},
"advanced": {
"title": "Enterprise AI Architect",
"duration": "180-220 hours",
"modules": [
{"name": "Multi-Agent Systems Design", "duration": "25 hours"},
{"name": "Custom Framework Development", "duration": "30 hours"},
{"name": "Scalable Architecture Patterns", "duration": "20 hours"},
{"name": "Security and Compliance", "duration": "15 hours"},
{"name": "Performance Optimization", "duration": "20 hours"},
{"name": "Industry Specialization", "duration": "30 hours"},
{"name": "Enterprise Integration", "duration": "25 hours"},
{"name": "Capstone Project", "duration": "35 hours"}
]
}
}
# Sample agent templates
AGENT_TEMPLATES = {
"customer_service": {
"name": "Customer Service Pro",
"description": "Handle customer inquiries with empathy and efficiency",
"code": """# Customer Service Agent
agent = AgentBuilder(
name="CustomerServicePro",
model="gpt-4",
system_prompt=\"\"\"You are a helpful customer service agent.
Be empathetic, solution-focused, and professional.
Always try to resolve issues on first contact.\"\"\",
tools=["order_lookup", "refund_process", "ticket_create"],
memory_type="conversation",
max_tokens=150
)
# Example usage
response = agent.process("I haven't received my order #12345")
print(response)"""
},
"data_analyst": {
"name": "Data Analyst Agent",
"description": "Automated data analysis and visualization",
"code": """# Data Analysis Agent
analyst = DataAnalystAgent(
name="DataInsightsPro",
model="gpt-4",
capabilities={
"data_sources": ["csv", "sql", "api"],
"analysis_types": ["descriptive", "predictive", "prescriptive"],
"visualizations": ["charts", "dashboards", "reports"]
},
auto_insights=True
)
# Analyze sales data
insights = analyst.analyze("sales_data.csv",
questions=["What are the top performing products?",
"Identify seasonal trends",
"Predict next quarter revenue"])"""
},
"content_creator": {
"name": "Content Creator Agent",
"description": "Generate engaging content for multiple platforms",
"code": """# Content Creation Agent
creator = ContentAgent(
name="ContentGenius",
model="claude-3-opus",
style_guide={
"tone": "professional yet engaging",
"format": "SEO-optimized",
"platforms": ["blog", "social", "email"]
},
fact_checking=True
)
# Generate blog post
post = creator.create(
type="blog_post",
topic="The Future of AI Agents",
keywords=["AI agents", "automation", "future of work"],
length=1000
)"""
}
}
def create_header():
return """
<div style="text-align: center; padding: 20px;">
<h1 style="color: #6366f1; font-size: 3em; margin-bottom: 10px;">🎓 AgenticAI Academy</h1>
<p style="font-size: 1.2em; color: #666;">Master AI Agent Development • From Beginner to Expert</p>
<p style="margin-top: 20px;">
<span style="background: #e0f2fe; color: #0369a1; padding: 5px 15px; border-radius: 20px; margin: 0 5px;">$32B Market by 2030</span>
<span style="background: #fef3c7; color: #d97706; padding: 5px 15px; border-radius: 20px; margin: 0 5px;">31.2% Annual Growth</span>
<span style="background: #fce7f3; color: #be185d; padding: 5px 15px; border-radius: 20px; margin: 0 5px;">$100K-250K+ Salaries</span>
</p>
</div>
"""
def register_user(name, email, experience_level, learning_goal):
"""Register a new user"""
if email in USERS_DB:
return "❌ Email already registered. Please login instead."
USERS_DB[email] = {
"name": name,
"experience_level": experience_level,
"learning_goal": learning_goal,
"registered": datetime.now().isoformat(),
"path": "beginner" if experience_level == "No coding experience" else "intermediate"
}
PROGRESS_DB[email] = {
"completed_modules": [],
"current_module": 0,
"total_hours": 0,
"projects": []
}
return f"✅ Welcome to AgenticAI Academy, {name}! Your {USERS_DB[email]['path']} learning path is ready."
def get_personalized_curriculum(email):
"""Get personalized curriculum based on user profile"""
if email not in USERS_DB:
return "Please register first to see your personalized curriculum."
user = USERS_DB[email]
path = user["path"]
curriculum = CURRICULUM[path]
progress = PROGRESS_DB.get(email, {})
completed = len(progress.get("completed_modules", []))
output = f"## 📚 Your Learning Path: {curriculum['title']}\n\n"
output += f"**Total Duration:** {curriculum['duration']}\n"
output += f"**Progress:** {completed}/{len(curriculum['modules'])} modules completed\n\n"
output += "### Modules:\n"
for i, module in enumerate(curriculum['modules']):
status = "✅" if i < completed else "⏳"
output += f"{i+1}. {status} **{module['name']}** ({module['duration']})\n"
return output
def generate_agent_code(agent_type, use_case, model_choice, include_memory, include_tools):
"""Generate custom agent code based on parameters"""
template = AGENT_TEMPLATES.get(agent_type, AGENT_TEMPLATES["customer_service"])
code = f"""# Generated {agent_type.replace('_', ' ').title()} Agent
# Use case: {use_case}
from agenticai import AgentBuilder, MemoryStore, ToolRegistry
# Initialize agent
agent = AgentBuilder(
name="{agent_type}_agent",
model="{model_choice}",
temperature=0.7
)
# Configure system prompt
agent.set_system_prompt(\"\"\"
{template['description']}
Specific use case: {use_case}
\"\"\")
"""
if include_memory:
code += """
# Add memory capabilities
agent.add_memory(
type="long_term",
store=MemoryStore(
vector_db="pinecone",
embedding_model="text-embedding-ada-002"
)
)
"""
if include_tools:
code += """
# Add tools
agent.add_tools([
"web_search",
"calculator",
"code_executor",
"file_handler"
])
"""
code += """
# Example usage
response = agent.process("Your query here")
print(response)
# Deploy agent
# agent.deploy(endpoint="/api/agent", port=8080)
"""
return code
def create_progress_visualization(email):
"""Create visual progress chart"""
if email not in PROGRESS_DB:
return None
progress = PROGRESS_DB[email]
user = USERS_DB.get(email, {})
path = user.get("path", "beginner")
curriculum = CURRICULUM[path]
# Create progress data
modules = [m["name"] for m in curriculum["modules"]]
completed = progress.get("completed_modules", [])
status = ["Completed" if i < len(completed) else "Pending" for i in range(len(modules))]
hours = [m["duration"].split()[0] for m in curriculum["modules"]]
# Create DataFrame
df = pd.DataFrame({
"Module": modules,
"Status": status,
"Hours": [int(h) for h in hours]
})
# Create Plotly figure
fig = px.bar(df, x="Hours", y="Module", orientation='h', color="Status",
color_discrete_map={"Completed": "#10b981", "Pending": "#e5e7eb"},
title="Your Learning Progress")
fig.update_layout(
showlegend=False,
xaxis_title="Duration (hours)",
yaxis_title="",
height=400
)
return fig
def simulate_agent_conversation(agent_type, user_input):
"""Simulate agent responses"""
responses = {
"customer_service": [
"I understand your concern. Let me look into that for you right away.",
"I've found your order #12345. It's currently in transit and should arrive within 2 days.",
"I apologize for the inconvenience. I'm processing a full refund for you now.",
"Is there anything else I can help you with today?"
],
"data_analyst": [
"I've analyzed your data and found some interesting patterns.",
"The top performing category shows 34% growth month-over-month.",
"Based on historical trends, I predict a 15% increase in Q2.",
"I've created a visualization to better illustrate these insights."
],
"content_creator": [
"I've drafted an engaging blog post optimized for your keywords.",
"The content includes relevant statistics and expert insights.",
"I've structured it with SEO-friendly headers and meta descriptions.",
"Would you like me to adjust the tone or add more sections?"
]
}
# Simulate processing
agent_responses = responses.get(agent_type, responses["customer_service"])
response = random.choice(agent_responses)
return f"**Agent Response:** {response}\n\n*This is a simulated response. In the full course, you'll build real agents that connect to actual AI models.*"
def create_market_stats():
"""Create market statistics visualization"""
# Market growth data
years = list(range(2024, 2031))
market_size = [5.88, 7.73, 10.16, 13.36, 17.57, 23.11, 30.39]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=years,
y=market_size,
mode='lines+markers',
name='Market Size',
line=dict(color='#6366f1', width=3),
marker=dict(size=8)
))
fig.update_layout(
title="AI Education Market Growth (Billions USD)",
xaxis_title="Year",
yaxis_title="Market Size (Billions)",
showlegend=False,
height=400
)
return fig
# Create Gradio interface
with gr.Blocks(title="AgenticAI Academy", theme=gr.themes.Base()) as app:
gr.HTML(create_header())
with gr.Tabs():
# Registration Tab
with gr.TabItem("🚀 Get Started"):
with gr.Row():
with gr.Column():
gr.Markdown("""
### Start Your AI Agent Development Journey
Join thousands of professionals learning to build production-ready AI agents.
Our hands-on curriculum takes you from beginner to expert, with real projects
and industry certifications.
""")
name_input = gr.Textbox(label="Full Name", placeholder="John Doe")
email_input = gr.Textbox(label="Email", placeholder="[email protected]")
experience_level = gr.Radio(
label="Current Experience Level",
choices=["No coding experience", "Some programming knowledge", "Experienced developer"],
value="No coding experience"
)
learning_goal = gr.Dropdown(
label="Primary Learning Goal",
choices=[
"Career transition to AI",
"Add AI skills to current role",
"Build AI products/startups",
"Enterprise AI implementation"
],
value="Career transition to AI"
)
register_btn = gr.Button("Start Free Trial", variant="primary", size="lg")
registration_output = gr.Textbox(label="Registration Status", lines=2)
with gr.Column():
gr.Markdown("""
### 📊 Market Opportunity
The AI education market is experiencing explosive growth, creating unprecedented
opportunities for skilled professionals.
""")
market_chart = gr.Plot(value=create_market_stats())
gr.Markdown("""
### 💰 Earning Potential
- **Freelance:** $50-500/hour
- **Full-time:** $100K-250K+ annually
- **Consulting:** $1,000-5,000/day
- **Products:** Unlimited scaling potential
""")
register_btn.click(
register_user,
inputs=[name_input, email_input, experience_level, learning_goal],
outputs=registration_output
)
# Curriculum Tab
with gr.TabItem("📚 Curriculum"):
with gr.Row():
with gr.Column(scale=1):
curriculum_email = gr.Textbox(
label="Enter your email to see personalized curriculum",
placeholder="[email protected]"
)
show_curriculum_btn = gr.Button("Show My Curriculum", variant="primary")
with gr.Column(scale=2):
curriculum_output = gr.Markdown()
progress_chart = gr.Plot()
show_curriculum_btn.click(
get_personalized_curriculum,
inputs=[curriculum_email],
outputs=curriculum_output
).then(
create_progress_visualization,
inputs=[curriculum_email],
outputs=progress_chart
)
gr.Markdown("""
### 🎓 Available Learning Paths
#### Beginner Path: AI Foundations to Agent Builder (80-100 hours)
Perfect for non-technical professionals. Learn to build AI agents using visual tools
and no-code platforms. Focus on business applications and practical implementation.
#### Intermediate Path: Agent Developer Professional (120-150 hours)
For developers ready to add AI to their toolkit. Master Python-based agent development,
advanced prompt engineering, and multi-provider integration.
#### Advanced Path: Enterprise AI Architect (180-220 hours)
Design and deploy complex multi-agent systems. Learn scalable architectures,
security best practices, and industry-specific solutions.
""")
# Agent Builder Tab
with gr.TabItem("🔧 Agent Builder"):
gr.Markdown("""
### Build Your Custom AI Agent
Use our code generator to create a starting template for your AI agent.
In the full course, you'll learn to build and deploy these agents with real AI models.
""")
with gr.Row():
with gr.Column():
agent_type = gr.Dropdown(
label="Agent Type",
choices=["customer_service", "data_analyst", "content_creator"],
value="customer_service"
)
use_case = gr.Textbox(
label="Specific Use Case",
placeholder="E.g., E-commerce support, Financial analysis, Blog writing"
)
model_choice = gr.Dropdown(
label="AI Model",
choices=["gpt-4", "gpt-3.5-turbo", "claude-3-opus", "gemini-pro"],
value="gpt-4"
)
include_memory = gr.Checkbox(label="Include Memory System", value=True)
include_tools = gr.Checkbox(label="Include External Tools", value=True)
generate_btn = gr.Button("Generate Agent Code", variant="primary")
with gr.Column():
code_output = gr.Code(label="Generated Agent Code", language="python")
generate_btn.click(
generate_agent_code,
inputs=[agent_type, use_case, model_choice, include_memory, include_tools],
outputs=code_output
)
# Interactive Demo Tab
with gr.TabItem("🤖 Try an Agent"):
gr.Markdown("""
### Interactive Agent Demo
Experience what AI agents can do. This is a simulation - in the course,
you'll build real agents that connect to actual AI models.
""")
with gr.Row():
with gr.Column():
demo_agent_type = gr.Radio(
label="Select Agent Type",
choices=["customer_service", "data_analyst", "content_creator"],
value="customer_service"
)
user_input = gr.Textbox(
label="Your Message",
placeholder="Type your message to the agent...",
lines=3
)
send_btn = gr.Button("Send Message", variant="primary")
with gr.Column():
agent_response = gr.Markdown(label="Agent Response")
send_btn.click(
simulate_agent_conversation,
inputs=[demo_agent_type, user_input],
outputs=agent_response
)
# Resources Tab
with gr.TabItem("📖 Resources"):
gr.Markdown("""
### 🎯 Free Resources to Get Started
#### 📺 Video Tutorials
- [Introduction to AI Agents](https://youtube.com/agenticai) (30 min)
- [Your First Prompt Engineering](https://youtube.com/agenticai) (45 min)
- [Building with No-Code Tools](https://youtube.com/agenticai) (60 min)
#### 📄 Documentation
- [AI Agent Fundamentals Guide](https://docs.agenticai.academy)
- [Prompt Engineering Best Practices](https://docs.agenticai.academy/prompts)
- [API Integration Handbook](https://docs.agenticai.academy/apis)
#### 💬 Community
- [Discord Server](https://discord.gg/agenticai) - 5,000+ members
- [GitHub Repository](https://github.com/agenticai-academy)
- [LinkedIn Group](https://linkedin.com/groups/agenticai)
#### 🏆 Success Stories
- **Sarah M.**: Marketing Manager → AI Consultant ($150K → $225K)
- **James L.**: Developer → AI Agency Owner ($30K/month revenue)
- **Tech Corp**: Trained 50 developers, saved $2M through automation
#### 🎓 Certifications
1. **Certified AI Agent Practitioner** - Entry level certification
2. **Certified AI Agent Developer** - Professional certification
3. **Certified Enterprise AI Architect** - Advanced certification
#### 💰 Pricing
- **Starter**: $35/month - Core curriculum access
- **Professional**: $60/month - Full features + certification
- **Enterprise**: Custom pricing - Team features + support
### 📞 Contact
- Email: [email protected]
- Schedule Demo: [Book a Call](https://calendly.com/agenticai)
""")
# Launch the app
if __name__ == "__main__":
app.launch() |