Update README.md
Browse files
README.md
CHANGED
|
@@ -1,22 +1,289 @@
|
|
| 1 |
---
|
| 2 |
base_model: unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit
|
| 3 |
tags:
|
| 4 |
-
- text-generation-inference
|
| 5 |
- transformers
|
| 6 |
- unsloth
|
| 7 |
- llama
|
| 8 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
license: apache-2.0
|
|
|
|
| 10 |
language:
|
| 11 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
|
| 20 |
-
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 21 |
|
| 22 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
| 1 |
---
|
| 2 |
base_model: unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit
|
| 3 |
tags:
|
|
|
|
| 4 |
- transformers
|
| 5 |
- unsloth
|
| 6 |
- llama
|
| 7 |
+
- text-to-speech
|
| 8 |
+
- tts
|
| 9 |
+
- audio
|
| 10 |
+
- speech
|
| 11 |
+
- anime
|
| 12 |
+
- english
|
| 13 |
+
- orpheus
|
| 14 |
+
- unsloth
|
| 15 |
+
- snac
|
| 16 |
license: apache-2.0
|
| 17 |
+
pipeline_tag: text-to-speech
|
| 18 |
language:
|
| 19 |
- en
|
| 20 |
+
datasets:
|
| 21 |
+
- ShoukanLabs/AniSpeech
|
| 22 |
+
widget:
|
| 23 |
+
- text: "Rain tapped the tin roof as Mira whispered secrets to the dusk. Shadows danced between the lantern’s glow, weaving memories of laughter and loss."
|
| 24 |
+
output:
|
| 25 |
+
url: "https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/4npjSAGONHwPwNtYAfyF-.wav"
|
| 26 |
+
voice: "16"
|
| 27 |
---
|
| 28 |
|
| 29 |
+
# Orpheus-3B Anime Speech Finetune (10 Voices)
|
| 30 |
+
|
| 31 |
+
This repository contains a text-to-speech (TTS) model fine-tuned from `canopylabs/orpheus-3b-0.1-ft`. It has been specifically trained to generate anime-style speech using 10 distinct voices from the `ShoukanLabs/AniSpeech` dataset.
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
## Model Description
|
| 35 |
+
|
| 36 |
+
* **Base Model:** [canopylabs/orpheus-3b-0.1-ft](https://huggingface.co/canopylabs/orpheus-3b-0.1-ft)
|
| 37 |
+
* **Fine-tuning Dataset:** [ShoukanLabs/AniSpeech](https://huggingface.co/datasets/ShoukanLabs/AniSpeech) (Subset of 10 voices)
|
| 38 |
+
* **Architecture:** Orpheus-3B
|
| 39 |
+
* **Language(s):** Primarily trained on English audio, performance on other languages may vary.
|
| 40 |
+
* **Purpose:** Generating expressive anime character voices from text prompts.
|
| 41 |
+
|
| 42 |
+
## Voices Available & Audio Samples
|
| 43 |
+
|
| 44 |
+
The model was fine-tuned on the following 10 voice IDs from the AniSpeech dataset. You can select a voice by providing its ID in the prompt.
|
| 45 |
+
|
| 46 |
+
*(Sample Text: "Rain tapped the tin roof as Mira whispered secrets to the dusk. Shadows danced between the lantern’s glow, weaving memories of laughter and loss.")*
|
| 47 |
+
|
| 48 |
+
* **voice-16:**
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/3kLwkaFrLtWpIHwPcRUeo.wav"></audio>
|
| 52 |
+
|
| 53 |
+
* **voice-107:**
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/FIMnSjfonNjNBhWbqlXRN.wav"></audio>
|
| 57 |
+
|
| 58 |
+
* **voice-125:**
|
| 59 |
+
|
| 60 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/fRs4xjLTFfnwAjureqqjw.wav"></audio>
|
| 61 |
+
|
| 62 |
+
* **voice-145:**
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/y0S-hvOkmEwrpHUQZgS2y.wav"></audio>
|
| 66 |
+
|
| 67 |
+
* **voice-163:**
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/wDpDLntQ0HsiSbi63VZNj.wav"></audio>
|
| 71 |
+
|
| 72 |
+
* **voice-179:**
|
| 73 |
+
|
| 74 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/8fSahGX8G8qpdtwXMlDG6.wav"></audio>
|
| 75 |
+
|
| 76 |
+
* **voice-180:**
|
| 77 |
+
|
| 78 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/f8JepscOwn4MQNu4lYivU.wav"></audio>
|
| 79 |
+
|
| 80 |
+
* **voice-183:**
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/bEiTaKGsGkHvyWZQFstPb.wav"></audio>
|
| 84 |
+
|
| 85 |
+
* **voice-185:**
|
| 86 |
+
|
| 87 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/4npjSAGONHwPwNtYAfyF-.wav"></audio>
|
| 88 |
+
|
| 89 |
+
* **voice-187:**
|
| 90 |
+
|
| 91 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/67c2f8504369cf18d0c356c3/dlWPGSRDUM9vEuMjLcgp5.wav"></audio>
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
## Usage
|
| 95 |
+
|
| 96 |
+
First, install the necessary libraries:
|
| 97 |
+
pip install torch transformers scipy tqdm unsloth snac
|
| 98 |
+
|
| 99 |
+
Save the following code as a Python file (e.g., generate_speech.py) and run it. This script will generate audio for the specified prompts using each of the available voices.
|
| 100 |
+
|
| 101 |
+
```python
|
| 102 |
+
import torch
|
| 103 |
+
from unsloth import FastLanguageModel
|
| 104 |
+
from snac import SNAC
|
| 105 |
+
from scipy.io.wavfile import write as write_wav
|
| 106 |
+
import os
|
| 107 |
+
from tqdm import tqdm
|
| 108 |
+
|
| 109 |
+
MODEL_NAME = "taresh18/orpheus-3B-animespeech-ft"
|
| 110 |
+
SNAC_MODEL_NAME = "hubertsiuzdak/snac_24khz"
|
| 111 |
+
MAX_SEQ_LENGTH = 2048
|
| 112 |
+
LOAD_IN_4BIT = False
|
| 113 |
+
DTYPE = None
|
| 114 |
+
DEVICE = "cuda"
|
| 115 |
+
OUTPUT_DIR = "outputs-animespeech-ft"
|
| 116 |
+
|
| 117 |
+
PROMPTS = [
|
| 118 |
+
"Rain tapped the tin roof as Mira whispered secrets to the dusk. Shadows danced between the lantern’s glow, weaving memories of laughter and loss.",
|
| 119 |
+
]
|
| 120 |
+
VOICES = ["107", "125", "145", "16", "163", "179", "180", "183", "185", "187"]
|
| 121 |
+
|
| 122 |
+
# Special token IDs
|
| 123 |
+
START_TOKEN_ID = 128259
|
| 124 |
+
END_TOKENS_IDS = [128009, 128260]
|
| 125 |
+
PAD_TOKEN_ID = 128263
|
| 126 |
+
CROP_START_TOKEN_ID = 128257
|
| 127 |
+
REMOVE_TOKEN_ID = 128258
|
| 128 |
+
AUDIO_CODE_OFFSET = 128266
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def redistribute_codes(code_list, device):
|
| 132 |
+
"""Redistributes flat token list into SNAC layers directly on the specified device."""
|
| 133 |
+
layer_1 = []
|
| 134 |
+
layer_2 = []
|
| 135 |
+
layer_3 = []
|
| 136 |
+
num_frames = len(code_list) // 7
|
| 137 |
+
for i in range(num_frames):
|
| 138 |
+
base_idx = 7 * i
|
| 139 |
+
if base_idx + 6 >= len(code_list): break
|
| 140 |
+
layer_1.append(code_list[base_idx])
|
| 141 |
+
layer_2.append(code_list[base_idx + 1] - 4096)
|
| 142 |
+
layer_3.append(code_list[base_idx + 2] - (2 * 4096))
|
| 143 |
+
layer_3.append(code_list[base_idx + 3] - (3 * 4096))
|
| 144 |
+
layer_2.append(code_list[base_idx + 4] - (4 * 4096))
|
| 145 |
+
layer_3.append(code_list[base_idx + 5] - (5 * 4096))
|
| 146 |
+
layer_3.append(code_list[base_idx + 6] - (6 * 4096))
|
| 147 |
+
|
| 148 |
+
codes = [torch.tensor(layer_1, dtype=torch.long, device=device).unsqueeze(0),
|
| 149 |
+
torch.tensor(layer_2, dtype=torch.long, device=device).unsqueeze(0),
|
| 150 |
+
torch.tensor(layer_3, dtype=torch.long, device=device).unsqueeze(0)]
|
| 151 |
+
return codes
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def load_models():
|
| 155 |
+
"""Loads the language model and the SNAC vocoder."""
|
| 156 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 157 |
+
model_name=MODEL_NAME,
|
| 158 |
+
max_seq_length=MAX_SEQ_LENGTH,
|
| 159 |
+
dtype=DTYPE,
|
| 160 |
+
load_in_4bit=LOAD_IN_4BIT,
|
| 161 |
+
)
|
| 162 |
+
FastLanguageModel.for_inference(model)
|
| 163 |
+
|
| 164 |
+
snac_model = SNAC.from_pretrained(SNAC_MODEL_NAME)
|
| 165 |
+
snac_model.to(DEVICE)
|
| 166 |
+
snac_model.eval()
|
| 167 |
+
print("Models loaded.")
|
| 168 |
+
return model, tokenizer, snac_model
|
| 169 |
+
|
| 170 |
+
def generate_audio_from_prompts(model, tokenizer, snac_model, prompts, chosen_voice):
|
| 171 |
+
"""Generates audio tensors from text prompts."""
|
| 172 |
+
prompts_with_voice = [(f"{chosen_voice}: " + p) if chosen_voice else p for p in prompts]
|
| 173 |
+
all_input_ids = [tokenizer(p, return_tensors="pt").input_ids for p in prompts_with_voice]
|
| 174 |
+
|
| 175 |
+
start_token = torch.tensor([[START_TOKEN_ID]], dtype=torch.int64)
|
| 176 |
+
end_tokens = torch.tensor([END_TOKENS_IDS], dtype=torch.int64)
|
| 177 |
+
|
| 178 |
+
all_modified_input_ids = [torch.cat([start_token, ids, end_tokens], dim=1) for ids in all_input_ids]
|
| 179 |
+
|
| 180 |
+
max_length = max([mod_ids.shape[1] for mod_ids in all_modified_input_ids])
|
| 181 |
+
all_padded_tensors = []
|
| 182 |
+
all_attention_masks = []
|
| 183 |
+
for mod_ids in all_modified_input_ids:
|
| 184 |
+
padding_length = max_length - mod_ids.shape[1]
|
| 185 |
+
padding_tensor = torch.full((1, padding_length), PAD_TOKEN_ID, dtype=torch.int64)
|
| 186 |
+
padded_tensor = torch.cat([padding_tensor, mod_ids], dim=1)
|
| 187 |
+
mask_padding = torch.zeros((1, padding_length), dtype=torch.int64)
|
| 188 |
+
mask_real = torch.ones((1, mod_ids.shape[1]), dtype=torch.int64)
|
| 189 |
+
attention_mask = torch.cat([mask_padding, mask_real], dim=1)
|
| 190 |
+
all_padded_tensors.append(padded_tensor)
|
| 191 |
+
all_attention_masks.append(attention_mask)
|
| 192 |
+
|
| 193 |
+
batch_input_ids = torch.cat(all_padded_tensors, dim=0).to(DEVICE)
|
| 194 |
+
batch_attention_mask = torch.cat(all_attention_masks, dim=0).to(DEVICE)
|
| 195 |
+
|
| 196 |
+
print("Generating tokens...")
|
| 197 |
+
with torch.no_grad():
|
| 198 |
+
generated_ids = model.generate(
|
| 199 |
+
input_ids=batch_input_ids,
|
| 200 |
+
attention_mask=batch_attention_mask,
|
| 201 |
+
max_new_tokens=1200,
|
| 202 |
+
do_sample=True,
|
| 203 |
+
temperature=0.6,
|
| 204 |
+
top_p=0.95,
|
| 205 |
+
repetition_penalty=1.1,
|
| 206 |
+
num_return_sequences=1,
|
| 207 |
+
eos_token_id=REMOVE_TOKEN_ID,
|
| 208 |
+
pad_token_id=tokenizer.pad_token_id if tokenizer.pad_token_id is not None else PAD_TOKEN_ID,
|
| 209 |
+
use_cache=True
|
| 210 |
+
)
|
| 211 |
+
generated_ids = generated_ids.to("cpu")
|
| 212 |
+
print("Token generation complete.")
|
| 213 |
+
|
| 214 |
+
token_indices = (generated_ids == CROP_START_TOKEN_ID).nonzero(as_tuple=True)
|
| 215 |
+
cropped_tensors = []
|
| 216 |
+
if len(token_indices[0]) > 0:
|
| 217 |
+
for i in range(generated_ids.shape[0]):
|
| 218 |
+
seq_indices = token_indices[1][token_indices[0] == i]
|
| 219 |
+
if len(seq_indices) > 0:
|
| 220 |
+
last_occurrence_idx = seq_indices[-1].item()
|
| 221 |
+
cropped_tensors.append(generated_ids[i, last_occurrence_idx + 1:].unsqueeze(0))
|
| 222 |
+
else:
|
| 223 |
+
cropped_tensors.append(generated_ids[i, batch_input_ids.shape[1]:].unsqueeze(0))
|
| 224 |
+
else:
|
| 225 |
+
cropped_tensors = [generated_ids[i, batch_input_ids.shape[1]:].unsqueeze(0) for i in range(generated_ids.shape[0])]
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
processed_rows = []
|
| 229 |
+
for row_tensor in cropped_tensors:
|
| 230 |
+
if row_tensor.numel() > 0:
|
| 231 |
+
row_1d = row_tensor.squeeze(0)
|
| 232 |
+
mask = row_1d != REMOVE_TOKEN_ID
|
| 233 |
+
processed_rows.append(row_1d[mask])
|
| 234 |
+
else:
|
| 235 |
+
processed_rows.append(row_tensor.squeeze(0))
|
| 236 |
+
|
| 237 |
+
code_lists = []
|
| 238 |
+
for row in processed_rows:
|
| 239 |
+
if row.numel() >= 7:
|
| 240 |
+
row_length = row.size(0)
|
| 241 |
+
new_length = (row_length // 7) * 7
|
| 242 |
+
trimmed_row = row[:new_length]
|
| 243 |
+
adjusted_code_list = [(t.item() - AUDIO_CODE_OFFSET) for t in trimmed_row]
|
| 244 |
+
code_lists.append(adjusted_code_list)
|
| 245 |
+
else:
|
| 246 |
+
code_lists.append([])
|
| 247 |
+
|
| 248 |
+
print("Decoding audio with SNAC...")
|
| 249 |
+
all_audio_samples = []
|
| 250 |
+
for i, code_list in enumerate(code_lists):
|
| 251 |
+
if code_list:
|
| 252 |
+
codes_for_snac = redistribute_codes(code_list, DEVICE)
|
| 253 |
+
with torch.no_grad():
|
| 254 |
+
audio_hat = snac_model.decode(codes_for_snac)
|
| 255 |
+
all_audio_samples.append(audio_hat.detach().cpu())
|
| 256 |
+
else:
|
| 257 |
+
all_audio_samples.append(torch.tensor([[]]))
|
| 258 |
+
|
| 259 |
+
return all_audio_samples
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def main():
|
| 263 |
+
model, tokenizer, snac_model = load_models()
|
| 264 |
+
|
| 265 |
+
for voice in tqdm(VOICES):
|
| 266 |
+
my_samples = generate_audio_from_prompts(model, tokenizer, snac_model, PROMPTS, voice)
|
| 267 |
+
|
| 268 |
+
if len(PROMPTS) != len(my_samples):
|
| 269 |
+
print("Error: Mismatch between number of prompts and generated samples.")
|
| 270 |
+
else:
|
| 271 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 272 |
+
|
| 273 |
+
for i, samples in enumerate(my_samples):
|
| 274 |
+
if samples.numel() > 0:
|
| 275 |
+
audio_data = samples.squeeze().numpy()
|
| 276 |
+
if audio_data.ndim == 0:
|
| 277 |
+
audio_data = audio_data.reshape(1)
|
| 278 |
+
output_filename = os.path.join(OUTPUT_DIR, f"voice_{voice}_{i}.wav")
|
| 279 |
+
write_wav(output_filename, 24000, audio_data)
|
| 280 |
+
print(f"Saved audio to: {output_filename}")
|
| 281 |
+
else:
|
| 282 |
+
print(f"Skipping save for sample {i} as no audio data was generated.")
|
| 283 |
+
|
| 284 |
|
| 285 |
+
if __name__ == "__main__":
|
| 286 |
+
main()
|
| 287 |
+
```
|
| 288 |
|
|
|
|
| 289 |
|
|
|