cpt core 4
Browse files- scripts/cpt_core_model_4.py +13 -21
scripts/cpt_core_model_4.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
from unsloth import FastLanguageModel
|
| 2 |
import torch
|
| 3 |
-
|
| 4 |
|
| 5 |
max_seq_length = 16384
|
| 6 |
dtype = torch.bfloat16
|
|
@@ -20,12 +20,10 @@ model, tokenizer = FastLanguageModel.from_pretrained(
|
|
| 20 |
dtype=dtype,
|
| 21 |
load_in_4bit=load_in_4bit,
|
| 22 |
)
|
| 23 |
-
|
| 24 |
print(f'{model=}')
|
| 25 |
|
| 26 |
# print('Ignore loaded tokenizer by FastLanguageModel.from_pretrained and using AutoTokenizer.from_pretrained')
|
| 27 |
# tokenizer = AutoTokenizer.from_pretrained('..', trust_remote_code=True, use_fast=True)
|
| 28 |
-
|
| 29 |
# print(f'{tokenizer=}')
|
| 30 |
|
| 31 |
model = FastLanguageModel.get_peft_model(
|
|
@@ -69,33 +67,28 @@ final_dataset = concatenate_datasets(core_datasets)
|
|
| 69 |
print(f'{final_dataset=}')
|
| 70 |
'''
|
| 71 |
|
|
|
|
| 72 |
from litdata import TokensLoader, StreamingDataset
|
| 73 |
|
| 74 |
-
|
|
|
|
| 75 |
input_dir=dataset_input_dir,
|
| 76 |
item_loader=TokensLoader(block_size=dataset_block_size),
|
| 77 |
)
|
| 78 |
|
| 79 |
|
| 80 |
-
def unlsoth_generator(
|
| 81 |
-
|
| 82 |
-
print(batch)
|
| 83 |
-
|
| 84 |
-
yield {
|
| 85 |
-
'input_ids': batch['input_ids'].tolist() # Convert tensor to list
|
| 86 |
-
}
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
break
|
| 89 |
-
# # Assuming TokensLoader returns tensors with 'input_ids'
|
| 90 |
-
# yield {
|
| 91 |
-
# 'input_ids': batch['input_ids'].tolist() # Convert tensor to list
|
| 92 |
-
# }
|
| 93 |
|
| 94 |
-
for n in unlsoth_generator(dataset):
|
| 95 |
-
print(n)
|
| 96 |
-
break
|
| 97 |
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
from trl import SFTTrainer
|
| 100 |
from transformers import TrainingArguments
|
| 101 |
from unsloth import is_bfloat16_supported
|
|
@@ -105,7 +98,7 @@ from unsloth import UnslothTrainer, UnslothTrainingArguments
|
|
| 105 |
trainer = UnslothTrainer(
|
| 106 |
model=model,
|
| 107 |
tokenizer=tokenizer,
|
| 108 |
-
train_dataset=
|
| 109 |
dataset_text_field='text',
|
| 110 |
max_seq_length=max_seq_length,
|
| 111 |
dataset_num_proc=32,
|
|
@@ -133,4 +126,3 @@ trainer = UnslothTrainer(
|
|
| 133 |
)
|
| 134 |
|
| 135 |
trainer_stats = trainer.train()
|
| 136 |
-
'''
|
|
|
|
| 1 |
from unsloth import FastLanguageModel
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer
|
| 4 |
|
| 5 |
max_seq_length = 16384
|
| 6 |
dtype = torch.bfloat16
|
|
|
|
| 20 |
dtype=dtype,
|
| 21 |
load_in_4bit=load_in_4bit,
|
| 22 |
)
|
|
|
|
| 23 |
print(f'{model=}')
|
| 24 |
|
| 25 |
# print('Ignore loaded tokenizer by FastLanguageModel.from_pretrained and using AutoTokenizer.from_pretrained')
|
| 26 |
# tokenizer = AutoTokenizer.from_pretrained('..', trust_remote_code=True, use_fast=True)
|
|
|
|
| 27 |
# print(f'{tokenizer=}')
|
| 28 |
|
| 29 |
model = FastLanguageModel.get_peft_model(
|
|
|
|
| 67 |
print(f'{final_dataset=}')
|
| 68 |
'''
|
| 69 |
|
| 70 |
+
from datasets import Dataset
|
| 71 |
from litdata import TokensLoader, StreamingDataset
|
| 72 |
|
| 73 |
+
|
| 74 |
+
litgpt_streaming_dataset = StreamingDataset(
|
| 75 |
input_dir=dataset_input_dir,
|
| 76 |
item_loader=TokensLoader(block_size=dataset_block_size),
|
| 77 |
)
|
| 78 |
|
| 79 |
|
| 80 |
+
def unlsoth_generator():
|
| 81 |
+
global litgpt_streaming_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
for batch in litgpt_streaming_dataset:
|
| 84 |
+
# print(batch)
|
| 85 |
+
yield {'input_ids': batch}
|
| 86 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
train_dataset = Dataset.from_generator(unlsoth_generator, streaming=True)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
from trl import SFTTrainer
|
| 93 |
from transformers import TrainingArguments
|
| 94 |
from unsloth import is_bfloat16_supported
|
|
|
|
| 98 |
trainer = UnslothTrainer(
|
| 99 |
model=model,
|
| 100 |
tokenizer=tokenizer,
|
| 101 |
+
train_dataset=train_dataset,
|
| 102 |
dataset_text_field='text',
|
| 103 |
max_seq_length=max_seq_length,
|
| 104 |
dataset_num_proc=32,
|
|
|
|
| 126 |
)
|
| 127 |
|
| 128 |
trainer_stats = trainer.train()
|
|
|