File size: 3,726 Bytes
fa14ad0
 
 
 
 
96368d5
fa14ad0
 
 
96368d5
 
 
 
 
fa14ad0
 
 
 
 
 
 
 
 
 
96368d5
fa14ad0
96368d5
 
 
 
 
 
 
fa14ad0
96368d5
fa14ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
library_name: transformers
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-7b-align-scan-7e-07-0.45-cosine-3.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-align-scan-7e-07-0.45-cosine-3.0

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9379
- Rewards/chosen: -0.3417
- Rewards/rejected: -2.0404
- Rewards/accuracies: 0.3472
- Rewards/margins: 1.6986
- Logps/rejected: -85.6625
- Logps/chosen: -75.2506
- Logits/rejected: -2.6727
- Logits/chosen: -2.6887

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6948        | 0.3484 | 100  | 0.6997          | 0.9816         | 0.4942           | 0.3452             | 0.4873          | -80.0301       | -72.3100     | -2.5413         | -2.5577       |
| 0.7373        | 0.6969 | 200  | 0.7720          | 1.2732         | 0.5117           | 0.3294             | 0.7615          | -79.9912       | -71.6619     | -2.5716         | -2.5870       |
| 0.4002        | 1.0453 | 300  | 0.8163          | 0.4524         | -0.4497          | 0.3472             | 0.9021          | -82.1276       | -73.4859     | -2.6256         | -2.6409       |
| 0.3982        | 1.3937 | 400  | 0.8872          | 1.2165         | 0.0680           | 0.3313             | 1.1485          | -80.9772       | -71.7879     | -2.7106         | -2.7265       |
| 0.389         | 1.7422 | 500  | 0.9107          | 0.3181         | -0.9594          | 0.3353             | 1.2775          | -83.2604       | -73.7844     | -2.7188         | -2.7346       |
| 0.3707        | 2.0906 | 600  | 0.8992          | 0.6908         | -0.7854          | 0.3472             | 1.4762          | -82.8736       | -72.9561     | -2.6904         | -2.7065       |
| 0.3672        | 2.4390 | 700  | 0.9354          | -0.5110        | -2.2396          | 0.3492             | 1.7285          | -86.1051       | -75.6269     | -2.6662         | -2.6823       |
| 0.3596        | 2.7875 | 800  | 0.9344          | -0.3373        | -2.0235          | 0.3452             | 1.6862          | -85.6249       | -75.2407     | -2.6727         | -2.6886       |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1