sylvester-francis commited on
Commit
aae389a
·
verified ·
1 Parent(s): 5d6487e

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -35,3 +35,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  checkpoint-189/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  checkpoint-189/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-750/tokenizer.json filter=lfs diff=lfs merge=lfs -text
adapter_config.json CHANGED
@@ -29,13 +29,13 @@
29
  "rank_pattern": {},
30
  "revision": null,
31
  "target_modules": [
32
- "o_proj",
33
  "up_proj",
34
- "k_proj",
35
- "v_proj",
36
- "gate_proj",
37
  "down_proj",
38
- "q_proj"
 
 
 
39
  ],
40
  "target_parameters": null,
41
  "task_type": "CAUSAL_LM",
 
29
  "rank_pattern": {},
30
  "revision": null,
31
  "target_modules": [
32
+ "q_proj",
33
  "up_proj",
 
 
 
34
  "down_proj",
35
+ "gate_proj",
36
+ "v_proj",
37
+ "k_proj",
38
+ "o_proj"
39
  ],
40
  "target_parameters": null,
41
  "task_type": "CAUSAL_LM",
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8824c005978df2676729c45a758b3d9ad7b62e8fa01d5eb2f0f94a63592ee291
3
  size 147770496
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de3f743ee0d6156dbccd9a34d93ca37a8cb1445eff714cd40a1d71c2ba8b5b49
3
  size 147770496
checkpoint-500/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen2.5-Coder-1.5B-Instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.18.0
checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-1.5B-Instruct",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.1,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 32,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "q_proj",
33
+ "up_proj",
34
+ "down_proj",
35
+ "gate_proj",
36
+ "v_proj",
37
+ "k_proj",
38
+ "o_proj"
39
+ ],
40
+ "target_parameters": null,
41
+ "task_type": "CAUSAL_LM",
42
+ "trainable_token_indices": null,
43
+ "use_dora": false,
44
+ "use_qalora": false,
45
+ "use_rslora": false
46
+ }
checkpoint-500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a19cd2ac1dff0f1fc639b4989d4f201e907f4c23234feb4d6a7c8a9254a715e6
3
+ size 147770496
checkpoint-500/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-500/chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
checkpoint-500/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f41f133cb09a3f513a95aff6f848c13bff2e219a95171b4bfba54917d345ae29
3
+ size 295766331
checkpoint-500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d0fcd917f81c5da546d7df8067d9d78330a53d7b673bcb63d8fd9ea02536101
3
+ size 14645
checkpoint-500/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f77569c2e850b04af982cc8c1389f1430851448915c593b69e5da36ce05b71d7
3
+ size 1383
checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96d05788156ac34450d3daabd7bddf7960db53ecb62c8e14504b610d18590687
3
+ size 1465
checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
checkpoint-500/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 1024,
203
+ "pad_token": "<|im_end|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.0,
6
+ "eval_steps": 500,
7
+ "global_step": 500,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 0.8118590474128723,
14
+ "epoch": 0.04,
15
+ "grad_norm": 0.05997199937701225,
16
+ "learning_rate": 7.82608695652174e-05,
17
+ "loss": 1.0028,
18
+ "mean_token_accuracy": 0.767544125020504,
19
+ "num_tokens": 327384.0,
20
+ "step": 10
21
+ },
22
+ {
23
+ "entropy": 0.8525841124355793,
24
+ "epoch": 0.08,
25
+ "grad_norm": 0.09163825213909149,
26
+ "learning_rate": 0.00016521739130434784,
27
+ "loss": 0.8959,
28
+ "mean_token_accuracy": 0.7876047976315022,
29
+ "num_tokens": 582000.0,
30
+ "step": 20
31
+ },
32
+ {
33
+ "entropy": 0.9385534837841988,
34
+ "epoch": 0.12,
35
+ "grad_norm": 0.11509037017822266,
36
+ "learning_rate": 0.00019996638918070336,
37
+ "loss": 0.918,
38
+ "mean_token_accuracy": 0.782110495865345,
39
+ "num_tokens": 745292.0,
40
+ "step": 30
41
+ },
42
+ {
43
+ "entropy": 0.911478316783905,
44
+ "epoch": 0.16,
45
+ "grad_norm": 0.14333251118659973,
46
+ "learning_rate": 0.0001997610715447061,
47
+ "loss": 0.9173,
48
+ "mean_token_accuracy": 0.780673997104168,
49
+ "num_tokens": 843998.0,
50
+ "step": 40
51
+ },
52
+ {
53
+ "entropy": 0.9255619779229164,
54
+ "epoch": 0.2,
55
+ "grad_norm": 0.37470874190330505,
56
+ "learning_rate": 0.0001993694918299864,
57
+ "loss": 0.9095,
58
+ "mean_token_accuracy": 0.7824992008507252,
59
+ "num_tokens": 886161.0,
60
+ "step": 50
61
+ },
62
+ {
63
+ "entropy": 0.9085440292954445,
64
+ "epoch": 0.24,
65
+ "grad_norm": 0.06702009588479996,
66
+ "learning_rate": 0.00019879238114789373,
67
+ "loss": 0.9319,
68
+ "mean_token_accuracy": 0.7772408030927181,
69
+ "num_tokens": 1213472.0,
70
+ "step": 60
71
+ },
72
+ {
73
+ "entropy": 0.8186310566961765,
74
+ "epoch": 0.28,
75
+ "grad_norm": 0.08344472944736481,
76
+ "learning_rate": 0.0001980308170112659,
77
+ "loss": 0.8226,
78
+ "mean_token_accuracy": 0.8009889200329781,
79
+ "num_tokens": 1468934.0,
80
+ "step": 70
81
+ },
82
+ {
83
+ "entropy": 0.8451250180602073,
84
+ "epoch": 0.32,
85
+ "grad_norm": 0.10779275745153427,
86
+ "learning_rate": 0.0001970862213226244,
87
+ "loss": 0.836,
88
+ "mean_token_accuracy": 0.7983625620603562,
89
+ "num_tokens": 1633249.0,
90
+ "step": 80
91
+ },
92
+ {
93
+ "entropy": 0.8599591284990311,
94
+ "epoch": 0.36,
95
+ "grad_norm": 0.15631401538848877,
96
+ "learning_rate": 0.00019596035771936592,
97
+ "loss": 0.8486,
98
+ "mean_token_accuracy": 0.7960575334727764,
99
+ "num_tokens": 1730768.0,
100
+ "step": 90
101
+ },
102
+ {
103
+ "entropy": 0.876547134667635,
104
+ "epoch": 0.4,
105
+ "grad_norm": 0.3903079032897949,
106
+ "learning_rate": 0.00019465532828090735,
107
+ "loss": 0.8639,
108
+ "mean_token_accuracy": 0.7935161642730236,
109
+ "num_tokens": 1771280.0,
110
+ "step": 100
111
+ },
112
+ {
113
+ "entropy": 0.9069034807384014,
114
+ "epoch": 0.44,
115
+ "grad_norm": 0.07801498472690582,
116
+ "learning_rate": 0.00019317356960393156,
117
+ "loss": 0.9173,
118
+ "mean_token_accuracy": 0.7792488023638725,
119
+ "num_tokens": 2098922.0,
120
+ "step": 110
121
+ },
122
+ {
123
+ "entropy": 0.8098581977188587,
124
+ "epoch": 0.48,
125
+ "grad_norm": 0.08503358066082001,
126
+ "learning_rate": 0.00019151784825306205,
127
+ "loss": 0.8102,
128
+ "mean_token_accuracy": 0.8027891904115677,
129
+ "num_tokens": 2358277.0,
130
+ "step": 120
131
+ },
132
+ {
133
+ "entropy": 0.8039502821862697,
134
+ "epoch": 0.52,
135
+ "grad_norm": 0.11073547601699829,
136
+ "learning_rate": 0.00018969125559546054,
137
+ "loss": 0.81,
138
+ "mean_token_accuracy": 0.8007699891924858,
139
+ "num_tokens": 2522737.0,
140
+ "step": 130
141
+ },
142
+ {
143
+ "entropy": 0.8364543087780476,
144
+ "epoch": 0.56,
145
+ "grad_norm": 0.1541292369365692,
146
+ "learning_rate": 0.00018769720202899194,
147
+ "loss": 0.8251,
148
+ "mean_token_accuracy": 0.7973810255527496,
149
+ "num_tokens": 2621039.0,
150
+ "step": 140
151
+ },
152
+ {
153
+ "entropy": 0.8665640391409397,
154
+ "epoch": 0.6,
155
+ "grad_norm": 0.3610881567001343,
156
+ "learning_rate": 0.00018553941061473218,
157
+ "loss": 0.8458,
158
+ "mean_token_accuracy": 0.7960383057594299,
159
+ "num_tokens": 2662897.0,
160
+ "step": 150
161
+ },
162
+ {
163
+ "entropy": 0.8594730854034424,
164
+ "epoch": 0.64,
165
+ "grad_norm": 0.10022123903036118,
166
+ "learning_rate": 0.00018322191012570919,
167
+ "loss": 0.8785,
168
+ "mean_token_accuracy": 0.7877491846680641,
169
+ "num_tokens": 2990339.0,
170
+ "step": 160
171
+ },
172
+ {
173
+ "entropy": 0.7944531835615635,
174
+ "epoch": 0.68,
175
+ "grad_norm": 0.10204905271530151,
176
+ "learning_rate": 0.0001807490275248539,
177
+ "loss": 0.7889,
178
+ "mean_token_accuracy": 0.8073874406516552,
179
+ "num_tokens": 3245518.0,
180
+ "step": 170
181
+ },
182
+ {
183
+ "entropy": 0.8212005525827408,
184
+ "epoch": 0.72,
185
+ "grad_norm": 0.11545777320861816,
186
+ "learning_rate": 0.00017812537988620675,
187
+ "loss": 0.8253,
188
+ "mean_token_accuracy": 0.7982150033116341,
189
+ "num_tokens": 3404933.0,
190
+ "step": 180
191
+ },
192
+ {
193
+ "entropy": 0.8301504630595445,
194
+ "epoch": 0.76,
195
+ "grad_norm": 0.17408080399036407,
196
+ "learning_rate": 0.00017535586577446276,
197
+ "loss": 0.8171,
198
+ "mean_token_accuracy": 0.8009781941771508,
199
+ "num_tokens": 3497564.0,
200
+ "step": 190
201
+ },
202
+ {
203
+ "entropy": 0.81050028167665,
204
+ "epoch": 0.8,
205
+ "grad_norm": 0.35289013385772705,
206
+ "learning_rate": 0.00017244565609895074,
207
+ "loss": 0.7865,
208
+ "mean_token_accuracy": 0.8109133973717689,
209
+ "num_tokens": 3534086.0,
210
+ "step": 200
211
+ },
212
+ {
213
+ "entropy": 0.837448638677597,
214
+ "epoch": 0.84,
215
+ "grad_norm": 0.08503283560276031,
216
+ "learning_rate": 0.00016940018445912272,
217
+ "loss": 0.8648,
218
+ "mean_token_accuracy": 0.7916912771761417,
219
+ "num_tokens": 3861579.0,
220
+ "step": 210
221
+ },
222
+ {
223
+ "entropy": 0.7994868710637093,
224
+ "epoch": 0.88,
225
+ "grad_norm": 0.09771085530519485,
226
+ "learning_rate": 0.00016622513699957948,
227
+ "loss": 0.7858,
228
+ "mean_token_accuracy": 0.8064859353005887,
229
+ "num_tokens": 4119938.0,
230
+ "step": 220
231
+ },
232
+ {
233
+ "entropy": 0.7886113189160824,
234
+ "epoch": 0.92,
235
+ "grad_norm": 0.12538443505764008,
236
+ "learning_rate": 0.00016292644179357336,
237
+ "loss": 0.798,
238
+ "mean_token_accuracy": 0.8042714856564999,
239
+ "num_tokens": 4283327.0,
240
+ "step": 230
241
+ },
242
+ {
243
+ "entropy": 0.801911610364914,
244
+ "epoch": 0.96,
245
+ "grad_norm": 0.16356100142002106,
246
+ "learning_rate": 0.00015951025777481096,
247
+ "loss": 0.7861,
248
+ "mean_token_accuracy": 0.8082708492875099,
249
+ "num_tokens": 4379704.0,
250
+ "step": 240
251
+ },
252
+ {
253
+ "entropy": 0.8030880324542522,
254
+ "epoch": 1.0,
255
+ "grad_norm": 0.2906339168548584,
256
+ "learning_rate": 0.00015598296323822024,
257
+ "loss": 0.7752,
258
+ "mean_token_accuracy": 0.8124107919633389,
259
+ "num_tokens": 4419741.0,
260
+ "step": 250
261
+ },
262
+ {
263
+ "entropy": 0.8512323558330536,
264
+ "epoch": 1.04,
265
+ "grad_norm": 0.0769343450665474,
266
+ "learning_rate": 0.00015235114393115202,
267
+ "loss": 0.8714,
268
+ "mean_token_accuracy": 0.7885661020874977,
269
+ "num_tokens": 4747421.0,
270
+ "step": 260
271
+ },
272
+ {
273
+ "entropy": 0.7640283957123757,
274
+ "epoch": 1.08,
275
+ "grad_norm": 0.09265792369842529,
276
+ "learning_rate": 0.0001486215807572515,
277
+ "loss": 0.7566,
278
+ "mean_token_accuracy": 0.8131284601986408,
279
+ "num_tokens": 5013839.0,
280
+ "step": 270
281
+ },
282
+ {
283
+ "entropy": 0.7704206634312868,
284
+ "epoch": 1.12,
285
+ "grad_norm": 0.1475331336259842,
286
+ "learning_rate": 0.00014480123711595636,
287
+ "loss": 0.7635,
288
+ "mean_token_accuracy": 0.8108469642698765,
289
+ "num_tokens": 5183957.0,
290
+ "step": 280
291
+ },
292
+ {
293
+ "entropy": 0.7694178409874439,
294
+ "epoch": 1.16,
295
+ "grad_norm": 0.17722958326339722,
296
+ "learning_rate": 0.0001408972459012606,
297
+ "loss": 0.7517,
298
+ "mean_token_accuracy": 0.8132740050554276,
299
+ "num_tokens": 5284281.0,
300
+ "step": 290
301
+ },
302
+ {
303
+ "entropy": 0.6807048697024584,
304
+ "epoch": 1.2,
305
+ "grad_norm": 0.358539342880249,
306
+ "learning_rate": 0.00013691689618401835,
307
+ "loss": 0.6343,
308
+ "mean_token_accuracy": 0.8411179468035698,
309
+ "num_tokens": 5325202.0,
310
+ "step": 300
311
+ },
312
+ {
313
+ "entropy": 0.8084883399307727,
314
+ "epoch": 1.24,
315
+ "grad_norm": 0.09149754047393799,
316
+ "learning_rate": 0.00013286761960265214,
317
+ "loss": 0.8618,
318
+ "mean_token_accuracy": 0.7917799115180969,
319
+ "num_tokens": 5652739.0,
320
+ "step": 310
321
+ },
322
+ {
323
+ "entropy": 0.7762876857072115,
324
+ "epoch": 1.28,
325
+ "grad_norm": 0.09918583184480667,
326
+ "learning_rate": 0.00012875697648767663,
327
+ "loss": 0.7423,
328
+ "mean_token_accuracy": 0.8153080217540264,
329
+ "num_tokens": 5909823.0,
330
+ "step": 320
331
+ },
332
+ {
333
+ "entropy": 0.7344005398452282,
334
+ "epoch": 1.32,
335
+ "grad_norm": 0.13750393688678741,
336
+ "learning_rate": 0.00012459264174594304,
337
+ "loss": 0.7361,
338
+ "mean_token_accuracy": 0.8177524119615555,
339
+ "num_tokens": 6071844.0,
340
+ "step": 330
341
+ },
342
+ {
343
+ "entropy": 0.702471449971199,
344
+ "epoch": 1.3599999999999999,
345
+ "grad_norm": 0.17901532351970673,
346
+ "learning_rate": 0.00012038239053096038,
347
+ "loss": 0.69,
348
+ "mean_token_accuracy": 0.8283238030970097,
349
+ "num_tokens": 6172369.0,
350
+ "step": 340
351
+ },
352
+ {
353
+ "entropy": 0.7282323956489563,
354
+ "epoch": 1.4,
355
+ "grad_norm": 0.38415881991386414,
356
+ "learning_rate": 0.00011613408372604825,
357
+ "loss": 0.6688,
358
+ "mean_token_accuracy": 0.8334715165197849,
359
+ "num_tokens": 6215094.0,
360
+ "step": 350
361
+ },
362
+ {
363
+ "entropy": 0.7796667337417602,
364
+ "epoch": 1.44,
365
+ "grad_norm": 0.09978846460580826,
366
+ "learning_rate": 0.00011185565326742473,
367
+ "loss": 0.838,
368
+ "mean_token_accuracy": 0.7973373785614968,
369
+ "num_tokens": 6541959.0,
370
+ "step": 360
371
+ },
372
+ {
373
+ "entropy": 0.7431464415043593,
374
+ "epoch": 1.48,
375
+ "grad_norm": 0.11637846380472183,
376
+ "learning_rate": 0.00010755508733463265,
377
+ "loss": 0.732,
378
+ "mean_token_accuracy": 0.8180491633713245,
379
+ "num_tokens": 6795064.0,
380
+ "step": 370
381
+ },
382
+ {
383
+ "entropy": 0.7368700005114078,
384
+ "epoch": 1.52,
385
+ "grad_norm": 0.1580406278371811,
386
+ "learning_rate": 0.00010324041543595535,
387
+ "loss": 0.7115,
388
+ "mean_token_accuracy": 0.8229206502437592,
389
+ "num_tokens": 6951520.0,
390
+ "step": 380
391
+ },
392
+ {
393
+ "entropy": 0.6850949611514807,
394
+ "epoch": 1.56,
395
+ "grad_norm": 0.19380679726600647,
396
+ "learning_rate": 9.891969341666809e-05,
397
+ "loss": 0.6795,
398
+ "mean_token_accuracy": 0.8305462062358856,
399
+ "num_tokens": 7042539.0,
400
+ "step": 390
401
+ },
402
+ {
403
+ "entropy": 0.6874195206910372,
404
+ "epoch": 1.6,
405
+ "grad_norm": 0.3993852734565735,
406
+ "learning_rate": 9.460098841811601e-05,
407
+ "loss": 0.6464,
408
+ "mean_token_accuracy": 0.840615575760603,
409
+ "num_tokens": 7081928.0,
410
+ "step": 400
411
+ },
412
+ {
413
+ "entropy": 0.8238836076110602,
414
+ "epoch": 1.6400000000000001,
415
+ "grad_norm": 0.11308339983224869,
416
+ "learning_rate": 9.029236381570161e-05,
417
+ "loss": 0.858,
418
+ "mean_token_accuracy": 0.7912634812295437,
419
+ "num_tokens": 7408986.0,
420
+ "step": 410
421
+ },
422
+ {
423
+ "entropy": 0.7328622534871101,
424
+ "epoch": 1.6800000000000002,
425
+ "grad_norm": 0.13542936742305756,
426
+ "learning_rate": 8.600186416390342e-05,
427
+ "loss": 0.7257,
428
+ "mean_token_accuracy": 0.8204753622412682,
429
+ "num_tokens": 7657210.0,
430
+ "step": 420
431
+ },
432
+ {
433
+ "entropy": 0.7326431553810835,
434
+ "epoch": 1.72,
435
+ "grad_norm": 0.14785650372505188,
436
+ "learning_rate": 8.173750017643504e-05,
437
+ "loss": 0.7114,
438
+ "mean_token_accuracy": 0.8220926195383071,
439
+ "num_tokens": 7816248.0,
440
+ "step": 430
441
+ },
442
+ {
443
+ "entropy": 0.6878415960818529,
444
+ "epoch": 1.76,
445
+ "grad_norm": 0.2059694081544876,
446
+ "learning_rate": 7.750723376958733e-05,
447
+ "loss": 0.6827,
448
+ "mean_token_accuracy": 0.8304854579269886,
449
+ "num_tokens": 7910352.0,
450
+ "step": 440
451
+ },
452
+ {
453
+ "entropy": 0.6678356051445007,
454
+ "epoch": 1.8,
455
+ "grad_norm": 0.4371260404586792,
456
+ "learning_rate": 7.33189631966799e-05,
457
+ "loss": 0.6174,
458
+ "mean_token_accuracy": 0.8434398949146271,
459
+ "num_tokens": 7949474.0,
460
+ "step": 450
461
+ },
462
+ {
463
+ "entropy": 0.7557789146900177,
464
+ "epoch": 1.8399999999999999,
465
+ "grad_norm": 0.10683777183294296,
466
+ "learning_rate": 6.918050830137609e-05,
467
+ "loss": 0.8036,
468
+ "mean_token_accuracy": 0.8040532894432545,
469
+ "num_tokens": 8277100.0,
470
+ "step": 460
471
+ },
472
+ {
473
+ "entropy": 0.7231194365769624,
474
+ "epoch": 1.88,
475
+ "grad_norm": 0.1221792995929718,
476
+ "learning_rate": 6.509959591739522e-05,
477
+ "loss": 0.7248,
478
+ "mean_token_accuracy": 0.820059847086668,
479
+ "num_tokens": 8534755.0,
480
+ "step": 470
481
+ },
482
+ {
483
+ "entropy": 0.7624214310199022,
484
+ "epoch": 1.92,
485
+ "grad_norm": 0.1458406001329422,
486
+ "learning_rate": 6.10838454418825e-05,
487
+ "loss": 0.7402,
488
+ "mean_token_accuracy": 0.8160238958895206,
489
+ "num_tokens": 8702155.0,
490
+ "step": 480
491
+ },
492
+ {
493
+ "entropy": 0.7613711394369602,
494
+ "epoch": 1.96,
495
+ "grad_norm": 0.21833185851573944,
496
+ "learning_rate": 5.714075460937125e-05,
497
+ "loss": 0.7412,
498
+ "mean_token_accuracy": 0.8151491984724999,
499
+ "num_tokens": 8800560.0,
500
+ "step": 490
501
+ },
502
+ {
503
+ "entropy": 0.6537208616733551,
504
+ "epoch": 2.0,
505
+ "grad_norm": 0.39814066886901855,
506
+ "learning_rate": 5.327768549289934e-05,
507
+ "loss": 0.6092,
508
+ "mean_token_accuracy": 0.8473344258964062,
509
+ "num_tokens": 8839482.0,
510
+ "step": 500
511
+ }
512
+ ],
513
+ "logging_steps": 10,
514
+ "max_steps": 750,
515
+ "num_input_tokens_seen": 0,
516
+ "num_train_epochs": 3,
517
+ "save_steps": 500,
518
+ "stateful_callbacks": {
519
+ "TrainerControl": {
520
+ "args": {
521
+ "should_epoch_stop": false,
522
+ "should_evaluate": false,
523
+ "should_log": false,
524
+ "should_save": true,
525
+ "should_training_stop": false
526
+ },
527
+ "attributes": {}
528
+ }
529
+ },
530
+ "total_flos": 7.157457787473101e+16,
531
+ "train_batch_size": 4,
532
+ "trial_name": null,
533
+ "trial_params": null
534
+ }
checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aca68e7e398fed919c2a2ae61301f7aa32090dd99ac1369ce2dc788bd6c4d76
3
+ size 6161
checkpoint-500/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-750/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen2.5-Coder-1.5B-Instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.18.0
checkpoint-750/adapter_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-1.5B-Instruct",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.1,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 32,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "q_proj",
33
+ "up_proj",
34
+ "down_proj",
35
+ "gate_proj",
36
+ "v_proj",
37
+ "k_proj",
38
+ "o_proj"
39
+ ],
40
+ "target_parameters": null,
41
+ "task_type": "CAUSAL_LM",
42
+ "trainable_token_indices": null,
43
+ "use_dora": false,
44
+ "use_qalora": false,
45
+ "use_rslora": false
46
+ }
checkpoint-750/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de3f743ee0d6156dbccd9a34d93ca37a8cb1445eff714cd40a1d71c2ba8b5b49
3
+ size 147770496
checkpoint-750/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-750/chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
checkpoint-750/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-750/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbb40e414b4b26a17d650c0eccd0111892a3b1511664fa6225d0f4a94caf7edc
3
+ size 295766331
checkpoint-750/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:137f9827565c50b717c1641be9e461f74d08a2616328b8ba5e759f8142dc4edc
3
+ size 14645
checkpoint-750/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ca8377b2ea0b440a1b7c1913409d5ce08c05c7f94eb3857477a86af97a6ec03
3
+ size 1383
checkpoint-750/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da6cffd29d107485fd65a3291d66df7b87424f25de973bb529c2fbe605d9c752
3
+ size 1465
checkpoint-750/special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
checkpoint-750/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-750/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 1024,
203
+ "pad_token": "<|im_end|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoint-750/trainer_state.json ADDED
@@ -0,0 +1,784 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 750,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 0.8118590474128723,
14
+ "epoch": 0.04,
15
+ "grad_norm": 0.05997199937701225,
16
+ "learning_rate": 7.82608695652174e-05,
17
+ "loss": 1.0028,
18
+ "mean_token_accuracy": 0.767544125020504,
19
+ "num_tokens": 327384.0,
20
+ "step": 10
21
+ },
22
+ {
23
+ "entropy": 0.8525841124355793,
24
+ "epoch": 0.08,
25
+ "grad_norm": 0.09163825213909149,
26
+ "learning_rate": 0.00016521739130434784,
27
+ "loss": 0.8959,
28
+ "mean_token_accuracy": 0.7876047976315022,
29
+ "num_tokens": 582000.0,
30
+ "step": 20
31
+ },
32
+ {
33
+ "entropy": 0.9385534837841988,
34
+ "epoch": 0.12,
35
+ "grad_norm": 0.11509037017822266,
36
+ "learning_rate": 0.00019996638918070336,
37
+ "loss": 0.918,
38
+ "mean_token_accuracy": 0.782110495865345,
39
+ "num_tokens": 745292.0,
40
+ "step": 30
41
+ },
42
+ {
43
+ "entropy": 0.911478316783905,
44
+ "epoch": 0.16,
45
+ "grad_norm": 0.14333251118659973,
46
+ "learning_rate": 0.0001997610715447061,
47
+ "loss": 0.9173,
48
+ "mean_token_accuracy": 0.780673997104168,
49
+ "num_tokens": 843998.0,
50
+ "step": 40
51
+ },
52
+ {
53
+ "entropy": 0.9255619779229164,
54
+ "epoch": 0.2,
55
+ "grad_norm": 0.37470874190330505,
56
+ "learning_rate": 0.0001993694918299864,
57
+ "loss": 0.9095,
58
+ "mean_token_accuracy": 0.7824992008507252,
59
+ "num_tokens": 886161.0,
60
+ "step": 50
61
+ },
62
+ {
63
+ "entropy": 0.9085440292954445,
64
+ "epoch": 0.24,
65
+ "grad_norm": 0.06702009588479996,
66
+ "learning_rate": 0.00019879238114789373,
67
+ "loss": 0.9319,
68
+ "mean_token_accuracy": 0.7772408030927181,
69
+ "num_tokens": 1213472.0,
70
+ "step": 60
71
+ },
72
+ {
73
+ "entropy": 0.8186310566961765,
74
+ "epoch": 0.28,
75
+ "grad_norm": 0.08344472944736481,
76
+ "learning_rate": 0.0001980308170112659,
77
+ "loss": 0.8226,
78
+ "mean_token_accuracy": 0.8009889200329781,
79
+ "num_tokens": 1468934.0,
80
+ "step": 70
81
+ },
82
+ {
83
+ "entropy": 0.8451250180602073,
84
+ "epoch": 0.32,
85
+ "grad_norm": 0.10779275745153427,
86
+ "learning_rate": 0.0001970862213226244,
87
+ "loss": 0.836,
88
+ "mean_token_accuracy": 0.7983625620603562,
89
+ "num_tokens": 1633249.0,
90
+ "step": 80
91
+ },
92
+ {
93
+ "entropy": 0.8599591284990311,
94
+ "epoch": 0.36,
95
+ "grad_norm": 0.15631401538848877,
96
+ "learning_rate": 0.00019596035771936592,
97
+ "loss": 0.8486,
98
+ "mean_token_accuracy": 0.7960575334727764,
99
+ "num_tokens": 1730768.0,
100
+ "step": 90
101
+ },
102
+ {
103
+ "entropy": 0.876547134667635,
104
+ "epoch": 0.4,
105
+ "grad_norm": 0.3903079032897949,
106
+ "learning_rate": 0.00019465532828090735,
107
+ "loss": 0.8639,
108
+ "mean_token_accuracy": 0.7935161642730236,
109
+ "num_tokens": 1771280.0,
110
+ "step": 100
111
+ },
112
+ {
113
+ "entropy": 0.9069034807384014,
114
+ "epoch": 0.44,
115
+ "grad_norm": 0.07801498472690582,
116
+ "learning_rate": 0.00019317356960393156,
117
+ "loss": 0.9173,
118
+ "mean_token_accuracy": 0.7792488023638725,
119
+ "num_tokens": 2098922.0,
120
+ "step": 110
121
+ },
122
+ {
123
+ "entropy": 0.8098581977188587,
124
+ "epoch": 0.48,
125
+ "grad_norm": 0.08503358066082001,
126
+ "learning_rate": 0.00019151784825306205,
127
+ "loss": 0.8102,
128
+ "mean_token_accuracy": 0.8027891904115677,
129
+ "num_tokens": 2358277.0,
130
+ "step": 120
131
+ },
132
+ {
133
+ "entropy": 0.8039502821862697,
134
+ "epoch": 0.52,
135
+ "grad_norm": 0.11073547601699829,
136
+ "learning_rate": 0.00018969125559546054,
137
+ "loss": 0.81,
138
+ "mean_token_accuracy": 0.8007699891924858,
139
+ "num_tokens": 2522737.0,
140
+ "step": 130
141
+ },
142
+ {
143
+ "entropy": 0.8364543087780476,
144
+ "epoch": 0.56,
145
+ "grad_norm": 0.1541292369365692,
146
+ "learning_rate": 0.00018769720202899194,
147
+ "loss": 0.8251,
148
+ "mean_token_accuracy": 0.7973810255527496,
149
+ "num_tokens": 2621039.0,
150
+ "step": 140
151
+ },
152
+ {
153
+ "entropy": 0.8665640391409397,
154
+ "epoch": 0.6,
155
+ "grad_norm": 0.3610881567001343,
156
+ "learning_rate": 0.00018553941061473218,
157
+ "loss": 0.8458,
158
+ "mean_token_accuracy": 0.7960383057594299,
159
+ "num_tokens": 2662897.0,
160
+ "step": 150
161
+ },
162
+ {
163
+ "entropy": 0.8594730854034424,
164
+ "epoch": 0.64,
165
+ "grad_norm": 0.10022123903036118,
166
+ "learning_rate": 0.00018322191012570919,
167
+ "loss": 0.8785,
168
+ "mean_token_accuracy": 0.7877491846680641,
169
+ "num_tokens": 2990339.0,
170
+ "step": 160
171
+ },
172
+ {
173
+ "entropy": 0.7944531835615635,
174
+ "epoch": 0.68,
175
+ "grad_norm": 0.10204905271530151,
176
+ "learning_rate": 0.0001807490275248539,
177
+ "loss": 0.7889,
178
+ "mean_token_accuracy": 0.8073874406516552,
179
+ "num_tokens": 3245518.0,
180
+ "step": 170
181
+ },
182
+ {
183
+ "entropy": 0.8212005525827408,
184
+ "epoch": 0.72,
185
+ "grad_norm": 0.11545777320861816,
186
+ "learning_rate": 0.00017812537988620675,
187
+ "loss": 0.8253,
188
+ "mean_token_accuracy": 0.7982150033116341,
189
+ "num_tokens": 3404933.0,
190
+ "step": 180
191
+ },
192
+ {
193
+ "entropy": 0.8301504630595445,
194
+ "epoch": 0.76,
195
+ "grad_norm": 0.17408080399036407,
196
+ "learning_rate": 0.00017535586577446276,
197
+ "loss": 0.8171,
198
+ "mean_token_accuracy": 0.8009781941771508,
199
+ "num_tokens": 3497564.0,
200
+ "step": 190
201
+ },
202
+ {
203
+ "entropy": 0.81050028167665,
204
+ "epoch": 0.8,
205
+ "grad_norm": 0.35289013385772705,
206
+ "learning_rate": 0.00017244565609895074,
207
+ "loss": 0.7865,
208
+ "mean_token_accuracy": 0.8109133973717689,
209
+ "num_tokens": 3534086.0,
210
+ "step": 200
211
+ },
212
+ {
213
+ "entropy": 0.837448638677597,
214
+ "epoch": 0.84,
215
+ "grad_norm": 0.08503283560276031,
216
+ "learning_rate": 0.00016940018445912272,
217
+ "loss": 0.8648,
218
+ "mean_token_accuracy": 0.7916912771761417,
219
+ "num_tokens": 3861579.0,
220
+ "step": 210
221
+ },
222
+ {
223
+ "entropy": 0.7994868710637093,
224
+ "epoch": 0.88,
225
+ "grad_norm": 0.09771085530519485,
226
+ "learning_rate": 0.00016622513699957948,
227
+ "loss": 0.7858,
228
+ "mean_token_accuracy": 0.8064859353005887,
229
+ "num_tokens": 4119938.0,
230
+ "step": 220
231
+ },
232
+ {
233
+ "entropy": 0.7886113189160824,
234
+ "epoch": 0.92,
235
+ "grad_norm": 0.12538443505764008,
236
+ "learning_rate": 0.00016292644179357336,
237
+ "loss": 0.798,
238
+ "mean_token_accuracy": 0.8042714856564999,
239
+ "num_tokens": 4283327.0,
240
+ "step": 230
241
+ },
242
+ {
243
+ "entropy": 0.801911610364914,
244
+ "epoch": 0.96,
245
+ "grad_norm": 0.16356100142002106,
246
+ "learning_rate": 0.00015951025777481096,
247
+ "loss": 0.7861,
248
+ "mean_token_accuracy": 0.8082708492875099,
249
+ "num_tokens": 4379704.0,
250
+ "step": 240
251
+ },
252
+ {
253
+ "entropy": 0.8030880324542522,
254
+ "epoch": 1.0,
255
+ "grad_norm": 0.2906339168548584,
256
+ "learning_rate": 0.00015598296323822024,
257
+ "loss": 0.7752,
258
+ "mean_token_accuracy": 0.8124107919633389,
259
+ "num_tokens": 4419741.0,
260
+ "step": 250
261
+ },
262
+ {
263
+ "entropy": 0.8512323558330536,
264
+ "epoch": 1.04,
265
+ "grad_norm": 0.0769343450665474,
266
+ "learning_rate": 0.00015235114393115202,
267
+ "loss": 0.8714,
268
+ "mean_token_accuracy": 0.7885661020874977,
269
+ "num_tokens": 4747421.0,
270
+ "step": 260
271
+ },
272
+ {
273
+ "entropy": 0.7640283957123757,
274
+ "epoch": 1.08,
275
+ "grad_norm": 0.09265792369842529,
276
+ "learning_rate": 0.0001486215807572515,
277
+ "loss": 0.7566,
278
+ "mean_token_accuracy": 0.8131284601986408,
279
+ "num_tokens": 5013839.0,
280
+ "step": 270
281
+ },
282
+ {
283
+ "entropy": 0.7704206634312868,
284
+ "epoch": 1.12,
285
+ "grad_norm": 0.1475331336259842,
286
+ "learning_rate": 0.00014480123711595636,
287
+ "loss": 0.7635,
288
+ "mean_token_accuracy": 0.8108469642698765,
289
+ "num_tokens": 5183957.0,
290
+ "step": 280
291
+ },
292
+ {
293
+ "entropy": 0.7694178409874439,
294
+ "epoch": 1.16,
295
+ "grad_norm": 0.17722958326339722,
296
+ "learning_rate": 0.0001408972459012606,
297
+ "loss": 0.7517,
298
+ "mean_token_accuracy": 0.8132740050554276,
299
+ "num_tokens": 5284281.0,
300
+ "step": 290
301
+ },
302
+ {
303
+ "entropy": 0.6807048697024584,
304
+ "epoch": 1.2,
305
+ "grad_norm": 0.358539342880249,
306
+ "learning_rate": 0.00013691689618401835,
307
+ "loss": 0.6343,
308
+ "mean_token_accuracy": 0.8411179468035698,
309
+ "num_tokens": 5325202.0,
310
+ "step": 300
311
+ },
312
+ {
313
+ "entropy": 0.8084883399307727,
314
+ "epoch": 1.24,
315
+ "grad_norm": 0.09149754047393799,
316
+ "learning_rate": 0.00013286761960265214,
317
+ "loss": 0.8618,
318
+ "mean_token_accuracy": 0.7917799115180969,
319
+ "num_tokens": 5652739.0,
320
+ "step": 310
321
+ },
322
+ {
323
+ "entropy": 0.7762876857072115,
324
+ "epoch": 1.28,
325
+ "grad_norm": 0.09918583184480667,
326
+ "learning_rate": 0.00012875697648767663,
327
+ "loss": 0.7423,
328
+ "mean_token_accuracy": 0.8153080217540264,
329
+ "num_tokens": 5909823.0,
330
+ "step": 320
331
+ },
332
+ {
333
+ "entropy": 0.7344005398452282,
334
+ "epoch": 1.32,
335
+ "grad_norm": 0.13750393688678741,
336
+ "learning_rate": 0.00012459264174594304,
337
+ "loss": 0.7361,
338
+ "mean_token_accuracy": 0.8177524119615555,
339
+ "num_tokens": 6071844.0,
340
+ "step": 330
341
+ },
342
+ {
343
+ "entropy": 0.702471449971199,
344
+ "epoch": 1.3599999999999999,
345
+ "grad_norm": 0.17901532351970673,
346
+ "learning_rate": 0.00012038239053096038,
347
+ "loss": 0.69,
348
+ "mean_token_accuracy": 0.8283238030970097,
349
+ "num_tokens": 6172369.0,
350
+ "step": 340
351
+ },
352
+ {
353
+ "entropy": 0.7282323956489563,
354
+ "epoch": 1.4,
355
+ "grad_norm": 0.38415881991386414,
356
+ "learning_rate": 0.00011613408372604825,
357
+ "loss": 0.6688,
358
+ "mean_token_accuracy": 0.8334715165197849,
359
+ "num_tokens": 6215094.0,
360
+ "step": 350
361
+ },
362
+ {
363
+ "entropy": 0.7796667337417602,
364
+ "epoch": 1.44,
365
+ "grad_norm": 0.09978846460580826,
366
+ "learning_rate": 0.00011185565326742473,
367
+ "loss": 0.838,
368
+ "mean_token_accuracy": 0.7973373785614968,
369
+ "num_tokens": 6541959.0,
370
+ "step": 360
371
+ },
372
+ {
373
+ "entropy": 0.7431464415043593,
374
+ "epoch": 1.48,
375
+ "grad_norm": 0.11637846380472183,
376
+ "learning_rate": 0.00010755508733463265,
377
+ "loss": 0.732,
378
+ "mean_token_accuracy": 0.8180491633713245,
379
+ "num_tokens": 6795064.0,
380
+ "step": 370
381
+ },
382
+ {
383
+ "entropy": 0.7368700005114078,
384
+ "epoch": 1.52,
385
+ "grad_norm": 0.1580406278371811,
386
+ "learning_rate": 0.00010324041543595535,
387
+ "loss": 0.7115,
388
+ "mean_token_accuracy": 0.8229206502437592,
389
+ "num_tokens": 6951520.0,
390
+ "step": 380
391
+ },
392
+ {
393
+ "entropy": 0.6850949611514807,
394
+ "epoch": 1.56,
395
+ "grad_norm": 0.19380679726600647,
396
+ "learning_rate": 9.891969341666809e-05,
397
+ "loss": 0.6795,
398
+ "mean_token_accuracy": 0.8305462062358856,
399
+ "num_tokens": 7042539.0,
400
+ "step": 390
401
+ },
402
+ {
403
+ "entropy": 0.6874195206910372,
404
+ "epoch": 1.6,
405
+ "grad_norm": 0.3993852734565735,
406
+ "learning_rate": 9.460098841811601e-05,
407
+ "loss": 0.6464,
408
+ "mean_token_accuracy": 0.840615575760603,
409
+ "num_tokens": 7081928.0,
410
+ "step": 400
411
+ },
412
+ {
413
+ "entropy": 0.8238836076110602,
414
+ "epoch": 1.6400000000000001,
415
+ "grad_norm": 0.11308339983224869,
416
+ "learning_rate": 9.029236381570161e-05,
417
+ "loss": 0.858,
418
+ "mean_token_accuracy": 0.7912634812295437,
419
+ "num_tokens": 7408986.0,
420
+ "step": 410
421
+ },
422
+ {
423
+ "entropy": 0.7328622534871101,
424
+ "epoch": 1.6800000000000002,
425
+ "grad_norm": 0.13542936742305756,
426
+ "learning_rate": 8.600186416390342e-05,
427
+ "loss": 0.7257,
428
+ "mean_token_accuracy": 0.8204753622412682,
429
+ "num_tokens": 7657210.0,
430
+ "step": 420
431
+ },
432
+ {
433
+ "entropy": 0.7326431553810835,
434
+ "epoch": 1.72,
435
+ "grad_norm": 0.14785650372505188,
436
+ "learning_rate": 8.173750017643504e-05,
437
+ "loss": 0.7114,
438
+ "mean_token_accuracy": 0.8220926195383071,
439
+ "num_tokens": 7816248.0,
440
+ "step": 430
441
+ },
442
+ {
443
+ "entropy": 0.6878415960818529,
444
+ "epoch": 1.76,
445
+ "grad_norm": 0.2059694081544876,
446
+ "learning_rate": 7.750723376958733e-05,
447
+ "loss": 0.6827,
448
+ "mean_token_accuracy": 0.8304854579269886,
449
+ "num_tokens": 7910352.0,
450
+ "step": 440
451
+ },
452
+ {
453
+ "entropy": 0.6678356051445007,
454
+ "epoch": 1.8,
455
+ "grad_norm": 0.4371260404586792,
456
+ "learning_rate": 7.33189631966799e-05,
457
+ "loss": 0.6174,
458
+ "mean_token_accuracy": 0.8434398949146271,
459
+ "num_tokens": 7949474.0,
460
+ "step": 450
461
+ },
462
+ {
463
+ "entropy": 0.7557789146900177,
464
+ "epoch": 1.8399999999999999,
465
+ "grad_norm": 0.10683777183294296,
466
+ "learning_rate": 6.918050830137609e-05,
467
+ "loss": 0.8036,
468
+ "mean_token_accuracy": 0.8040532894432545,
469
+ "num_tokens": 8277100.0,
470
+ "step": 460
471
+ },
472
+ {
473
+ "entropy": 0.7231194365769624,
474
+ "epoch": 1.88,
475
+ "grad_norm": 0.1221792995929718,
476
+ "learning_rate": 6.509959591739522e-05,
477
+ "loss": 0.7248,
478
+ "mean_token_accuracy": 0.820059847086668,
479
+ "num_tokens": 8534755.0,
480
+ "step": 470
481
+ },
482
+ {
483
+ "entropy": 0.7624214310199022,
484
+ "epoch": 1.92,
485
+ "grad_norm": 0.1458406001329422,
486
+ "learning_rate": 6.10838454418825e-05,
487
+ "loss": 0.7402,
488
+ "mean_token_accuracy": 0.8160238958895206,
489
+ "num_tokens": 8702155.0,
490
+ "step": 480
491
+ },
492
+ {
493
+ "entropy": 0.7613711394369602,
494
+ "epoch": 1.96,
495
+ "grad_norm": 0.21833185851573944,
496
+ "learning_rate": 5.714075460937125e-05,
497
+ "loss": 0.7412,
498
+ "mean_token_accuracy": 0.8151491984724999,
499
+ "num_tokens": 8800560.0,
500
+ "step": 490
501
+ },
502
+ {
503
+ "entropy": 0.6537208616733551,
504
+ "epoch": 2.0,
505
+ "grad_norm": 0.39814066886901855,
506
+ "learning_rate": 5.327768549289934e-05,
507
+ "loss": 0.6092,
508
+ "mean_token_accuracy": 0.8473344258964062,
509
+ "num_tokens": 8839482.0,
510
+ "step": 500
511
+ },
512
+ {
513
+ "entropy": 0.7942855045199394,
514
+ "epoch": 2.04,
515
+ "grad_norm": 0.1046057939529419,
516
+ "learning_rate": 4.9501850758417056e-05,
517
+ "loss": 0.8213,
518
+ "mean_token_accuracy": 0.7997106194496155,
519
+ "num_tokens": 9166520.0,
520
+ "step": 510
521
+ },
522
+ {
523
+ "entropy": 0.6845901045948267,
524
+ "epoch": 2.08,
525
+ "grad_norm": 0.11944226920604706,
526
+ "learning_rate": 4.582030019814948e-05,
527
+ "loss": 0.6879,
528
+ "mean_token_accuracy": 0.8275571748614311,
529
+ "num_tokens": 9423125.0,
530
+ "step": 520
531
+ },
532
+ {
533
+ "entropy": 0.713664248213172,
534
+ "epoch": 2.12,
535
+ "grad_norm": 0.15875312685966492,
536
+ "learning_rate": 4.223990756805841e-05,
537
+ "loss": 0.6864,
538
+ "mean_token_accuracy": 0.8269673593342304,
539
+ "num_tokens": 9587584.0,
540
+ "step": 530
541
+ },
542
+ {
543
+ "entropy": 0.6808680634945631,
544
+ "epoch": 2.16,
545
+ "grad_norm": 0.2167051136493683,
546
+ "learning_rate": 3.8767357753977596e-05,
547
+ "loss": 0.6363,
548
+ "mean_token_accuracy": 0.8397710673511029,
549
+ "num_tokens": 9683189.0,
550
+ "step": 540
551
+ },
552
+ {
553
+ "entropy": 0.6310655426234006,
554
+ "epoch": 2.2,
555
+ "grad_norm": 0.42550230026245117,
556
+ "learning_rate": 3.540913429038407e-05,
557
+ "loss": 0.5481,
558
+ "mean_token_accuracy": 0.8616865545511245,
559
+ "num_tokens": 9723785.0,
560
+ "step": 550
561
+ },
562
+ {
563
+ "entropy": 0.7458249524235725,
564
+ "epoch": 2.24,
565
+ "grad_norm": 0.1268557608127594,
566
+ "learning_rate": 3.217150725510946e-05,
567
+ "loss": 0.8037,
568
+ "mean_token_accuracy": 0.8051810264587402,
569
+ "num_tokens": 10051177.0,
570
+ "step": 560
571
+ },
572
+ {
573
+ "entropy": 0.7029979381710291,
574
+ "epoch": 2.2800000000000002,
575
+ "grad_norm": 0.13476522266864777,
576
+ "learning_rate": 2.9060521562591624e-05,
577
+ "loss": 0.732,
578
+ "mean_token_accuracy": 0.8179502584040165,
579
+ "num_tokens": 10305046.0,
580
+ "step": 570
581
+ },
582
+ {
583
+ "entropy": 0.7075169749557972,
584
+ "epoch": 2.32,
585
+ "grad_norm": 0.15390700101852417,
586
+ "learning_rate": 2.608198567752512e-05,
587
+ "loss": 0.6863,
588
+ "mean_token_accuracy": 0.827414334565401,
589
+ "num_tokens": 10464165.0,
590
+ "step": 580
591
+ },
592
+ {
593
+ "entropy": 0.7264889780431986,
594
+ "epoch": 2.36,
595
+ "grad_norm": 0.21259604394435883,
596
+ "learning_rate": 2.3241460769982814e-05,
597
+ "loss": 0.6886,
598
+ "mean_token_accuracy": 0.8280333392322063,
599
+ "num_tokens": 10560951.0,
600
+ "step": 590
601
+ },
602
+ {
603
+ "entropy": 0.58490473870188,
604
+ "epoch": 2.4,
605
+ "grad_norm": 0.4374448359012604,
606
+ "learning_rate": 2.0544250332256276e-05,
607
+ "loss": 0.5086,
608
+ "mean_token_accuracy": 0.8706422604620456,
609
+ "num_tokens": 10600998.0,
610
+ "step": 600
611
+ },
612
+ {
613
+ "entropy": 0.8061852857470513,
614
+ "epoch": 2.44,
615
+ "grad_norm": 0.12525418400764465,
616
+ "learning_rate": 1.799539027680216e-05,
617
+ "loss": 0.8365,
618
+ "mean_token_accuracy": 0.7974523492157459,
619
+ "num_tokens": 10928678.0,
620
+ "step": 610
621
+ },
622
+ {
623
+ "entropy": 0.6682436108589173,
624
+ "epoch": 2.48,
625
+ "grad_norm": 0.1342065930366516,
626
+ "learning_rate": 1.5599639533781853e-05,
627
+ "loss": 0.6933,
628
+ "mean_token_accuracy": 0.8261794589459897,
629
+ "num_tokens": 11195766.0,
630
+ "step": 620
631
+ },
632
+ {
633
+ "entropy": 0.6829290065914393,
634
+ "epoch": 2.52,
635
+ "grad_norm": 0.16089050471782684,
636
+ "learning_rate": 1.3361471165749562e-05,
637
+ "loss": 0.6747,
638
+ "mean_token_accuracy": 0.8309472300112247,
639
+ "num_tokens": 11364584.0,
640
+ "step": 630
641
+ },
642
+ {
643
+ "entropy": 0.677256828173995,
644
+ "epoch": 2.56,
645
+ "grad_norm": 0.212812602519989,
646
+ "learning_rate": 1.1285064016078784e-05,
647
+ "loss": 0.6465,
648
+ "mean_token_accuracy": 0.8378356143832206,
649
+ "num_tokens": 11465749.0,
650
+ "step": 640
651
+ },
652
+ {
653
+ "entropy": 0.6223138906061649,
654
+ "epoch": 2.6,
655
+ "grad_norm": 0.4253580570220947,
656
+ "learning_rate": 9.374294906720082e-06,
657
+ "loss": 0.5433,
658
+ "mean_token_accuracy": 0.8606500513851643,
659
+ "num_tokens": 11507652.0,
660
+ "step": 650
661
+ },
662
+ {
663
+ "entropy": 0.7784962818026543,
664
+ "epoch": 2.64,
665
+ "grad_norm": 0.1105949729681015,
666
+ "learning_rate": 7.63273139985733e-06,
667
+ "loss": 0.7908,
668
+ "mean_token_accuracy": 0.8065024986863136,
669
+ "num_tokens": 11834885.0,
670
+ "step": 660
671
+ },
672
+ {
673
+ "entropy": 0.6436492279171944,
674
+ "epoch": 2.68,
675
+ "grad_norm": 0.14102977514266968,
676
+ "learning_rate": 6.063625136977447e-06,
677
+ "loss": 0.6591,
678
+ "mean_token_accuracy": 0.8364327348768711,
679
+ "num_tokens": 12084559.0,
680
+ "step": 670
681
+ },
682
+ {
683
+ "entropy": 0.6770952560007573,
684
+ "epoch": 2.7199999999999998,
685
+ "grad_norm": 0.18300692737102509,
686
+ "learning_rate": 4.669905767789884e-06,
687
+ "loss": 0.6787,
688
+ "mean_token_accuracy": 0.8301728747785091,
689
+ "num_tokens": 12245118.0,
690
+ "step": 680
691
+ },
692
+ {
693
+ "entropy": 0.6532967071980238,
694
+ "epoch": 2.76,
695
+ "grad_norm": 0.22459393739700317,
696
+ "learning_rate": 3.454175480330857e-06,
697
+ "loss": 0.6295,
698
+ "mean_token_accuracy": 0.8411597743630409,
699
+ "num_tokens": 12341764.0,
700
+ "step": 690
701
+ },
702
+ {
703
+ "entropy": 0.5622258361428976,
704
+ "epoch": 2.8,
705
+ "grad_norm": 0.4296166002750397,
706
+ "learning_rate": 2.418704142465722e-06,
707
+ "loss": 0.4985,
708
+ "mean_token_accuracy": 0.8744776912033558,
709
+ "num_tokens": 12382504.0,
710
+ "step": 700
711
+ },
712
+ {
713
+ "entropy": 0.7967640496790409,
714
+ "epoch": 2.84,
715
+ "grad_norm": 0.11412588506937027,
716
+ "learning_rate": 1.56542506385986e-06,
717
+ "loss": 0.8069,
718
+ "mean_token_accuracy": 0.8025561511516571,
719
+ "num_tokens": 12710105.0,
720
+ "step": 710
721
+ },
722
+ {
723
+ "entropy": 0.7018159870058298,
724
+ "epoch": 2.88,
725
+ "grad_norm": 0.1381121128797531,
726
+ "learning_rate": 8.959313863315389e-07,
727
+ "loss": 0.7188,
728
+ "mean_token_accuracy": 0.8199774742126464,
729
+ "num_tokens": 12965490.0,
730
+ "step": 720
731
+ },
732
+ {
733
+ "entropy": 0.6720455687493085,
734
+ "epoch": 2.92,
735
+ "grad_norm": 0.1741972267627716,
736
+ "learning_rate": 4.114731093257884e-07,
737
+ "loss": 0.6729,
738
+ "mean_token_accuracy": 0.8303120598196984,
739
+ "num_tokens": 13127948.0,
740
+ "step": 730
741
+ },
742
+ {
743
+ "entropy": 0.6231573238968849,
744
+ "epoch": 2.96,
745
+ "grad_norm": 0.21798616647720337,
746
+ "learning_rate": 1.129547560632771e-07,
747
+ "loss": 0.5902,
748
+ "mean_token_accuracy": 0.8499781206250191,
749
+ "num_tokens": 13221676.0,
750
+ "step": 740
751
+ },
752
+ {
753
+ "entropy": 0.5697622459381819,
754
+ "epoch": 3.0,
755
+ "grad_norm": 0.4558388292789459,
756
+ "learning_rate": 9.336847214269639e-10,
757
+ "loss": 0.4921,
758
+ "mean_token_accuracy": 0.8710406333208084,
759
+ "num_tokens": 13259223.0,
760
+ "step": 750
761
+ }
762
+ ],
763
+ "logging_steps": 10,
764
+ "max_steps": 750,
765
+ "num_input_tokens_seen": 0,
766
+ "num_train_epochs": 3,
767
+ "save_steps": 500,
768
+ "stateful_callbacks": {
769
+ "TrainerControl": {
770
+ "args": {
771
+ "should_epoch_stop": false,
772
+ "should_evaluate": false,
773
+ "should_log": false,
774
+ "should_save": true,
775
+ "should_training_stop": true
776
+ },
777
+ "attributes": {}
778
+ }
779
+ },
780
+ "total_flos": 1.0736248116728218e+17,
781
+ "train_batch_size": 4,
782
+ "trial_name": null,
783
+ "trial_params": null
784
+ }
checkpoint-750/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aca68e7e398fed919c2a2ae61301f7aa32090dd99ac1369ce2dc788bd6c4d76
3
+ size 6161
checkpoint-750/vocab.json ADDED
The diff for this file is too large to render. See raw diff