Update README.md (#8)
Browse files- Update README.md (a087c76b076f44db0fa2c2e56b4a30ad3b67f1ab)
Co-authored-by: Vaibhav Srivastav <[email protected]>
README.md
CHANGED
|
@@ -67,22 +67,32 @@ Try out Bark yourself!
|
|
| 67 |
</a>
|
| 68 |
|
| 69 |
|
| 70 |
-
## 🤗 Transformers Usage
|
| 71 |
-
|
| 72 |
-
|
| 73 |
You can run Bark locally with the 🤗 Transformers library from version 4.31.0 onwards.
|
| 74 |
|
| 75 |
-
1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers)
|
| 76 |
|
| 77 |
```
|
| 78 |
-
pip install
|
|
|
|
| 79 |
```
|
| 80 |
|
| 81 |
-
2. Run the
|
| 82 |
|
| 83 |
```python
|
| 84 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
processor = AutoProcessor.from_pretrained("suno/bark-small")
|
| 88 |
model = AutoModel.from_pretrained("suno/bark-small")
|
|
@@ -95,7 +105,7 @@ inputs = processor(
|
|
| 95 |
speech_values = model.generate(**inputs, do_sample=True)
|
| 96 |
```
|
| 97 |
|
| 98 |
-
|
| 99 |
|
| 100 |
```python
|
| 101 |
from IPython.display import Audio
|
|
@@ -109,7 +119,7 @@ Or save them as a `.wav` file using a third-party library, e.g. `scipy`:
|
|
| 109 |
```python
|
| 110 |
import scipy
|
| 111 |
|
| 112 |
-
sampling_rate = model.
|
| 113 |
scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
|
| 114 |
```
|
| 115 |
|
|
|
|
| 67 |
</a>
|
| 68 |
|
| 69 |
|
|
|
|
|
|
|
|
|
|
| 70 |
You can run Bark locally with the 🤗 Transformers library from version 4.31.0 onwards.
|
| 71 |
|
| 72 |
+
1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) and scipy:
|
| 73 |
|
| 74 |
```
|
| 75 |
+
pip install --upgrade pip
|
| 76 |
+
pip install --upgrade transformers scipy
|
| 77 |
```
|
| 78 |
|
| 79 |
+
2. Run inference via the `Text-to-Speech` (TTS) pipeline. You can infer the bark model via the TTS pipeline in just a few lines of code!
|
| 80 |
|
| 81 |
```python
|
| 82 |
+
from transformers import pipeline
|
| 83 |
+
import scipy
|
| 84 |
+
|
| 85 |
+
synthesiser = pipeline("text-to-speech", "suno/bark-small")
|
| 86 |
+
|
| 87 |
+
speech = pipe("Hello, my dog is cooler than you!", forward_params={"do_sample": True})
|
| 88 |
|
| 89 |
+
scipy.io.wavfile.write("bark_out.wav", rate=speech["sampling_rate"], data=speech["audio"])
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
3. Run inference via the Transformers modelling code. You can use the processor + generate code to convert text into a mono 24 kHz speech waveform for more fine-grained control.
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
from transformers import AutoProcessor, AutoModel
|
| 96 |
|
| 97 |
processor = AutoProcessor.from_pretrained("suno/bark-small")
|
| 98 |
model = AutoModel.from_pretrained("suno/bark-small")
|
|
|
|
| 105 |
speech_values = model.generate(**inputs, do_sample=True)
|
| 106 |
```
|
| 107 |
|
| 108 |
+
4. Listen to the speech samples either in an ipynb notebook:
|
| 109 |
|
| 110 |
```python
|
| 111 |
from IPython.display import Audio
|
|
|
|
| 119 |
```python
|
| 120 |
import scipy
|
| 121 |
|
| 122 |
+
sampling_rate = model.config.sample_rate
|
| 123 |
scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
|
| 124 |
```
|
| 125 |
|