Update README.md
Browse fileschanged to fine_tune as its not mor
README.md
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
license: mit
|
3 |
library_name: transformers
|
4 |
tags:
|
5 |
-
- mixture-of-recursions
|
6 |
- adaptive-computation
|
7 |
- early-exiting
|
8 |
- llama
|
@@ -17,26 +16,13 @@ pipeline_tag: text-generation
|
|
17 |
model_type: llama
|
18 |
---
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
<div align="center">
|
23 |
-
|
24 |
-
[](https://arxiv.org/abs/2507.10524)
|
25 |
-
[](https://github.com/raymin0223/mixture_of_recursions)
|
26 |
-
[](https://opensource.org/licenses/MIT)
|
27 |
|
28 |
</div>
|
29 |
|
30 |
## Model Description
|
31 |
|
32 |
-
This is a **Mixture-of-Recursions (MoR)** model that implements adaptive token-level computation through dynamic recursive depths. MoR addresses key bottlenecks in early-exiting techniques by introducing a unified framework that tackles both missing Key-Value (KV) cache problems and inefficient batched inference.
|
33 |
|
34 |
-
**Key Features:**
|
35 |
-
- 🚀 **Up to 2× greater inference throughput** compared to standard transformers at similar accuracy
|
36 |
-
- 🧠 **Dynamic routing mechanism** that assigns optimal recursion depth to each token
|
37 |
-
- 💾 **Recursion-wise KV caching strategy** that optimizes memory usage
|
38 |
-
- ⚡ **Efficient batched inference** through parameter sharing
|
39 |
-
- 🎯 **End-to-end trainable** architecture
|
40 |
|
41 |
### Model Details
|
42 |
|
@@ -64,7 +50,7 @@ import torch
|
|
64 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
65 |
|
66 |
# Load model and tokenizer
|
67 |
-
model_name = "your-username/
|
68 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
69 |
model = AutoModelForCausalLM.from_pretrained(
|
70 |
model_name,
|
|
|
2 |
license: mit
|
3 |
library_name: transformers
|
4 |
tags:
|
|
|
5 |
- adaptive-computation
|
6 |
- early-exiting
|
7 |
- llama
|
|
|
16 |
model_type: llama
|
17 |
---
|
18 |
|
19 |
+
# Model Fine tunning on ineweb-edu-dedup, Hugging face open datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
</div>
|
22 |
|
23 |
## Model Description
|
24 |
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
### Model Details
|
28 |
|
|
|
50 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
51 |
|
52 |
# Load model and tokenizer
|
53 |
+
model_name = "your-username/fine_tune"
|
54 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
56 |
model_name,
|