Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,101 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-Coder-0.5B
|
| 3 |
+
datasets: None
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
tags:
|
| 8 |
+
- text-generation-inference
|
| 9 |
+
- transformers
|
| 10 |
+
- torch
|
| 11 |
+
- trl
|
| 12 |
+
- unsloth
|
| 13 |
+
- llama
|
| 14 |
+
- gguf
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Uploaded model
|
| 19 |
+
|
| 20 |
+
- **Developed by:** student-abdullah
|
| 21 |
+
- **License:** apache-2.0
|
| 22 |
+
- **Quantized from model:** Qwen2.5-Coder-0.5B
|
| 23 |
+
- **Created on:** 14th July, 2025
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
# Acknowledgement
|
| 27 |
+
<div style="display: flex; gap: 10px; align-items: center;">
|
| 28 |
+
<img src="https://colab.research.google.com/img/colab_favicon_256px.png" width="200"/>
|
| 29 |
+
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/ef/ChatGPT-Logo.svg/2048px-ChatGPT-Logo.svg.png" width="140"/>
|
| 30 |
+
<img src="https://compareaimodels.com/content/images/2024/08/qwen-square.svg" width="200"/>
|
| 31 |
+
</div>
|
| 32 |
+
|
| 33 |
+
---
|
| 34 |
+
# Quantization Description
|
| 35 |
+
This model is quantized using *selective quantization* from the Qwen2.5-Coder-0.5B base model to increase its speed while preserving the capabilities in generating relevant and accurate responses related python programming.
|
| 36 |
+
The quantization method included *16-bit* quantization of the following Layers:
|
| 37 |
+
- q_proj
|
| 38 |
+
- v_proj
|
| 39 |
+
- o_proj
|
| 40 |
+
- down_proj
|
| 41 |
+
- lm_head
|
| 42 |
+
|
| 43 |
+
Rest of the remaining layers were quantized to *Q2*
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
# Model Description
|
| 47 |
+
| Layer Name | Role (Short) | Type |
|
| 48 |
+
| ---------------------------- | ----------------------------------------------------- | -------------- |
|
| 49 |
+
| `q_proj`, `k_proj`, `v_proj` | Compute query, key, and value for attention mechanism | Attention Proj |
|
| 50 |
+
| `o_proj` | Projects attention output back to model hidden size | Attention Proj |
|
| 51 |
+
| `down_proj` | Projects MLP output down to hidden size | MLP |
|
| 52 |
+
| `gate_proj` | First part of Gated MLP, controls info flow | MLP |
|
| 53 |
+
| `up_proj` | Expands hidden size in MLP | MLP |
|
| 54 |
+
| `lm_head` | Final linear layer for logits | Output Head |
|
| 55 |
+
| `embed_tokens` | Token embedding layer | Input Embed |
|
| 56 |
+
| `norm` | Final layernorm | Normalization |
|
| 57 |
+
| `*_layernorm` | Normalize inputs to layers | Normalization |
|
| 58 |
+
|
| 59 |
+
---
|
| 60 |
+
# Model Architect
|
| 61 |
+
<pre><code>Qwen2ForCausalLM(
|
| 62 |
+
(model): Qwen2Model(
|
| 63 |
+
(embed_tokens): Embedding(151936, 896, padding_idx=151665)
|
| 64 |
+
(layers): ModuleList(
|
| 65 |
+
(0-23): 24 x Qwen2DecoderLayer(
|
| 66 |
+
(self_attn): Qwen2Attention(
|
| 67 |
+
(q_proj): Linear(in_features=896, out_features=896, bias=True)
|
| 68 |
+
(k_proj): Linear(in_features=896, out_features=128, bias=True)
|
| 69 |
+
(v_proj): Linear(in_features=896, out_features=128, bias=True)
|
| 70 |
+
(o_proj): Linear(in_features=896, out_features=896, bias=False)
|
| 71 |
+
(rotary_emb): LlamaRotaryEmbedding()
|
| 72 |
+
)
|
| 73 |
+
(mlp): Qwen2MLP(
|
| 74 |
+
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
|
| 75 |
+
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
|
| 76 |
+
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
|
| 77 |
+
(act_fn): SiLU()
|
| 78 |
+
)
|
| 79 |
+
(input_layernorm): Qwen2RMSNorm((896,), eps=1e-06)
|
| 80 |
+
(post_attention_layernorm): Qwen2RMSNorm((896,), eps=1e-06)
|
| 81 |
+
)
|
| 82 |
+
)
|
| 83 |
+
(norm): Qwen2RMSNorm((896,), eps=1e-06)
|
| 84 |
+
(rotary_emb): LlamaRotaryEmbedding()
|
| 85 |
+
)
|
| 86 |
+
(lm_head): Linear(in_features=896, out_features=151936, bias=False)
|
| 87 |
+
)</code></pre>
|
| 88 |
+
|
| 89 |
+
---
|
| 90 |
+
# Performance & Limitations
|
| 91 |
+
- YET TO BE EXAMINED
|
| 92 |
+
|
| 93 |
+
---
|
| 94 |
+
# Model Performace Evaluation:
|
| 95 |
+
- YET TO BE EVALUATED
|
| 96 |
+
|
| 97 |
+
<p align="center">
|
| 98 |
+
<img src="" width="20%" style="display:inline-block;"/>
|
| 99 |
+
<img src="" width="35%" style="display:inline-block;"/>
|
| 100 |
+
<img src="" width="35%" style="display:inline-block;"/>
|
| 101 |
+
</p>
|