Rico
commited on
Commit
·
c533b15
1
Parent(s):
7bf5511
[UPDATE] update files
Browse files- deploy_guidance.md +0 -210
- stepfun-logo.png +0 -0
deploy_guidance.md
DELETED
@@ -1,210 +0,0 @@
|
|
1 |
-
# Step3 Model Deployment Guide
|
2 |
-
|
3 |
-
This document provides deployment guidance for Step3 model.
|
4 |
-
|
5 |
-
Currently, our open-source deployment guide only includes TP and DP+TP deployment methods. The AFD (Attn-FFN Disaggregated) approach mentioned in our [paper](https://arxiv.org/abs/2507.19427) is still under joint development with the open-source community to achieve optimal performance. Please stay tuned for updates on our open-source progress.
|
6 |
-
|
7 |
-
## Overview
|
8 |
-
|
9 |
-
Step3 is a 321B-parameter VLM with hardware-aware model-system co-design optimized for minimizing decoding costs.
|
10 |
-
|
11 |
-
For out fp8 version, about 326G memory is required.
|
12 |
-
The smallest deployment unit for this version is 8xH20 with either Tensor Parallel (TP) or Data Parallel + Tensor Parallel (DP+TP).
|
13 |
-
|
14 |
-
For out bf16 version, about 642G memory is required.
|
15 |
-
The smallest deployment unit for this version is 16xH20 with either Tensor Parallel (TP) or Data Parallel + Tensor Parallel (DP+TP).
|
16 |
-
|
17 |
-
## Deployment Options
|
18 |
-
|
19 |
-
### vLLM Deployment
|
20 |
-
|
21 |
-
Please make sure to use nightly version of vllm. For details, please refer to [vllm nightly installation doc](https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html#pre-built-wheels).
|
22 |
-
```bash
|
23 |
-
uv pip install -U vllm \
|
24 |
-
--torch-backend=auto \
|
25 |
-
--extra-index-url https://wheels.vllm.ai/nightly
|
26 |
-
```
|
27 |
-
|
28 |
-
We recommend to use the following command to deploy the model:
|
29 |
-
|
30 |
-
**`max_num_batched_tokens` should be larger than 4096. If not set, the default value is 8192.**
|
31 |
-
|
32 |
-
#### BF16 Model
|
33 |
-
##### Tensor Parallelism(Serving on 16xH20):
|
34 |
-
|
35 |
-
```bash
|
36 |
-
# start ray on node 0 and node 1
|
37 |
-
|
38 |
-
# node 0:
|
39 |
-
vllm serve /path/to/step3 \
|
40 |
-
--tensor-parallel-size 16 \
|
41 |
-
--reasoning-parser step3 \
|
42 |
-
--enable-auto-tool-choice \
|
43 |
-
--tool-call-parser step3 \
|
44 |
-
--trust-remote-code \
|
45 |
-
--port $PORT_SERVING
|
46 |
-
```
|
47 |
-
|
48 |
-
###### Data Parallelism + Tensor Parallelism(Serving on 16xH20):
|
49 |
-
Step3 only has single kv head, so attention data parallelism can be adopted to reduce the kv cache memory usage.
|
50 |
-
|
51 |
-
```bash
|
52 |
-
# start ray on node 0 and node 1
|
53 |
-
|
54 |
-
# node 0:
|
55 |
-
vllm serve /path/to/step3 \
|
56 |
-
--data-parallel-size 16 \
|
57 |
-
--tensor-parallel-size 1 \
|
58 |
-
--reasoning-parser step3 \
|
59 |
-
--enable-auto-tool-choice \
|
60 |
-
--tool-call-parser step3 \
|
61 |
-
--trust-remote-code \
|
62 |
-
```
|
63 |
-
|
64 |
-
#### FP8 Model
|
65 |
-
##### Tensor Parallelism(Serving on 8xH20):
|
66 |
-
|
67 |
-
```bash
|
68 |
-
vllm serve /path/to/step3-fp8 \
|
69 |
-
--tensor-parallel-size 8 \
|
70 |
-
--reasoning-parser step3 \
|
71 |
-
--enable-auto-tool-choice \
|
72 |
-
--tool-call-parser step3 \
|
73 |
-
--gpu-memory-utilization 0.85 \
|
74 |
-
--trust-remote-code \
|
75 |
-
```
|
76 |
-
|
77 |
-
###### Data Parallelism + Tensor Parallelism(Serving on 8xH20):
|
78 |
-
|
79 |
-
```bash
|
80 |
-
vllm serve /path/to/step3-fp8 \
|
81 |
-
--data-parallel-size 8 \
|
82 |
-
--tensor-parallel-size 1 \
|
83 |
-
--reasoning-parser step3 \
|
84 |
-
--enable-auto-tool-choice \
|
85 |
-
--tool-call-parser step3 \
|
86 |
-
--trust-remote-code \
|
87 |
-
```
|
88 |
-
|
89 |
-
|
90 |
-
##### Key parameter notes:
|
91 |
-
|
92 |
-
* `reasoning-parser`: If enabled, reasoning content in the response will be parsed into a structured format.
|
93 |
-
* `tool-call-parser`: If enabled, tool call content in the response will be parsed into a structured format.
|
94 |
-
|
95 |
-
### SGLang Deployment
|
96 |
-
|
97 |
-
0.4.10 or later is needed for SGLang.
|
98 |
-
|
99 |
-
```
|
100 |
-
pip3 install "sglang[all]>=0.4.10"
|
101 |
-
```
|
102 |
-
|
103 |
-
#### BF16 Model
|
104 |
-
##### Tensor Parallelism(Serving on 16xH20):
|
105 |
-
|
106 |
-
```bash
|
107 |
-
# start ray on node 0 and node 1
|
108 |
-
|
109 |
-
# node 0:
|
110 |
-
python -m sglang.launch_server \
|
111 |
-
--model-path /path/to/step3 \
|
112 |
-
--trust-remote-code \
|
113 |
-
--tool-call-parser step3 \
|
114 |
-
--reasoning-parser step3 \
|
115 |
-
--tp 16
|
116 |
-
```
|
117 |
-
|
118 |
-
#### FP8 Model
|
119 |
-
##### Tensor Parallelism(Serving on 8xH20):
|
120 |
-
|
121 |
-
```bash
|
122 |
-
python -m sglang.launch_server \
|
123 |
-
--model-path /path/to/step3-fp8 \
|
124 |
-
--trust-remote-code \
|
125 |
-
--tool-call-parser step3 \
|
126 |
-
--reasoning-parser step3-fp8 \
|
127 |
-
--tp 8
|
128 |
-
```
|
129 |
-
|
130 |
-
|
131 |
-
### TensorRT-LLM Deployment
|
132 |
-
|
133 |
-
[Coming soon...]
|
134 |
-
|
135 |
-
|
136 |
-
## Client Request Examples
|
137 |
-
|
138 |
-
Then you can use the chat API as below:
|
139 |
-
```python
|
140 |
-
from openai import OpenAI
|
141 |
-
|
142 |
-
# Set OpenAI's API key and API base to use vLLM's API server.
|
143 |
-
openai_api_key = "EMPTY"
|
144 |
-
openai_api_base = "http://localhost:8000/v1"
|
145 |
-
|
146 |
-
client = OpenAI(
|
147 |
-
api_key=openai_api_key,
|
148 |
-
base_url=openai_api_base,
|
149 |
-
)
|
150 |
-
|
151 |
-
chat_response = client.chat.completions.create(
|
152 |
-
model="step3",
|
153 |
-
messages=[
|
154 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
155 |
-
{
|
156 |
-
"role": "user",
|
157 |
-
"content": [
|
158 |
-
{
|
159 |
-
"type": "image_url",
|
160 |
-
"image_url": {
|
161 |
-
"url": "https://xxxxx.png"
|
162 |
-
},
|
163 |
-
},
|
164 |
-
{"type": "text", "text": "Please describe the image."},
|
165 |
-
],
|
166 |
-
},
|
167 |
-
],
|
168 |
-
)
|
169 |
-
print("Chat response:", chat_response)
|
170 |
-
```
|
171 |
-
You can also upload base64-encoded local images:
|
172 |
-
|
173 |
-
```python
|
174 |
-
import base64
|
175 |
-
from openai import OpenAI
|
176 |
-
# Set OpenAI's API key and API base to use vLLM's API server.
|
177 |
-
openai_api_key = "EMPTY"
|
178 |
-
openai_api_base = "http://localhost:8000/v1"
|
179 |
-
client = OpenAI(
|
180 |
-
api_key=openai_api_key,
|
181 |
-
base_url=openai_api_base,
|
182 |
-
)
|
183 |
-
image_path = "/path/to/local/image.png"
|
184 |
-
with open(image_path, "rb") as f:
|
185 |
-
encoded_image = base64.b64encode(f.read())
|
186 |
-
encoded_image_text = encoded_image.decode("utf-8")
|
187 |
-
base64_step = f"data:image;base64,{encoded_image_text}"
|
188 |
-
chat_response = client.chat.completions.create(
|
189 |
-
model="step3",
|
190 |
-
messages=[
|
191 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
192 |
-
{
|
193 |
-
"role": "user",
|
194 |
-
"content": [
|
195 |
-
{
|
196 |
-
"type": "image_url",
|
197 |
-
"image_url": {
|
198 |
-
"url": base64_step
|
199 |
-
},
|
200 |
-
},
|
201 |
-
{"type": "text", "text": "Please describe the image."},
|
202 |
-
],
|
203 |
-
},
|
204 |
-
],
|
205 |
-
)
|
206 |
-
print("Chat response:", chat_response)
|
207 |
-
|
208 |
-
```
|
209 |
-
|
210 |
-
Note: In our image preprocessing pipeline, we implement a multi-patch mechanism to handle large images. If the input image exceeds 728x728 pixels, the system will automatically apply image cropping logic to get patches of the image.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stepfun-logo.png
DELETED
Binary file (7.29 kB)
|
|