support device type `cpu` generate
Browse files- modeling_GOT.py +200 -134
modeling_GOT.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer
|
| 2 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 3 |
from typing import List, Optional, Tuple, Union
|
|
@@ -19,7 +20,7 @@ DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
|
|
| 19 |
DEFAULT_IM_START_TOKEN = '<img>'
|
| 20 |
DEFAULT_IM_END_TOKEN = '</img>'
|
| 21 |
|
| 22 |
-
|
| 23 |
class SeparatorStyle(Enum):
|
| 24 |
"""Different separator style."""
|
| 25 |
SINGLE = auto()
|
|
@@ -65,7 +66,7 @@ class Conversation:
|
|
| 65 |
return ret
|
| 66 |
if self.sep_style == SeparatorStyle.MPT:
|
| 67 |
if self.system:
|
| 68 |
-
ret = self.system + self.sep
|
| 69 |
else:
|
| 70 |
ret = ''
|
| 71 |
for role, message in self.messages:
|
|
@@ -79,7 +80,6 @@ class Conversation:
|
|
| 79 |
else:
|
| 80 |
raise ValueError(f"Invalid style: {self.sep_style}")
|
| 81 |
|
| 82 |
-
|
| 83 |
def append_message(self, role, message):
|
| 84 |
self.messages.append([role, message])
|
| 85 |
|
|
@@ -94,12 +94,12 @@ class Conversation:
|
|
| 94 |
sep2=self.sep2)
|
| 95 |
|
| 96 |
|
| 97 |
-
|
| 98 |
class KeywordsStoppingCriteria(StoppingCriteria):
|
| 99 |
def __init__(self, keywords, tokenizer, input_ids):
|
| 100 |
self.keywords = keywords
|
| 101 |
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
|
| 102 |
-
self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(
|
|
|
|
| 103 |
self.tokenizer = tokenizer
|
| 104 |
self.start_len = None
|
| 105 |
self.input_ids = input_ids
|
|
@@ -111,12 +111,13 @@ class KeywordsStoppingCriteria(StoppingCriteria):
|
|
| 111 |
for keyword_id in self.keyword_ids:
|
| 112 |
if output_ids[0, -1] == keyword_id:
|
| 113 |
return True
|
| 114 |
-
outputs = self.tokenizer.batch_decode(
|
|
|
|
| 115 |
for keyword in self.keywords:
|
| 116 |
if keyword in outputs:
|
| 117 |
return True
|
| 118 |
return False
|
| 119 |
-
|
| 120 |
|
| 121 |
class GOTImageEvalProcessor:
|
| 122 |
def __init__(self, image_size=384, mean=None, std=None):
|
|
@@ -136,11 +137,11 @@ class GOTImageEvalProcessor:
|
|
| 136 |
self.normalize,
|
| 137 |
]
|
| 138 |
)
|
|
|
|
| 139 |
def __call__(self, item):
|
| 140 |
return self.transform(item)
|
| 141 |
|
| 142 |
|
| 143 |
-
|
| 144 |
class GOTConfig(Qwen2Config):
|
| 145 |
model_type = "GOT"
|
| 146 |
|
|
@@ -153,28 +154,25 @@ class GOTQwenModel(Qwen2Model):
|
|
| 153 |
|
| 154 |
self.vision_tower_high = build_GOT_vit_b()
|
| 155 |
|
| 156 |
-
self.mm_projector_vary =
|
| 157 |
-
|
| 158 |
|
| 159 |
def initialize_vision_modules(
|
| 160 |
-
self,
|
| 161 |
vision_tower,
|
| 162 |
pretrained_stage1_model=None,
|
| 163 |
freeze_vision_tower=False,
|
| 164 |
use_im_start_end=False,
|
| 165 |
vision_select_layer=-1,
|
| 166 |
dtype=torch.float16,
|
| 167 |
-
device="cuda"
|
| 168 |
):
|
| 169 |
|
| 170 |
-
|
| 171 |
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
| 172 |
-
|
| 173 |
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
|
| 174 |
|
| 175 |
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
|
| 176 |
|
| 177 |
-
|
| 178 |
image_token_len = 256
|
| 179 |
|
| 180 |
self.config.vision_tower = vision_tower
|
|
@@ -184,13 +182,12 @@ class GOTQwenModel(Qwen2Model):
|
|
| 184 |
|
| 185 |
self.config.vision_select_layer = vision_select_layer
|
| 186 |
self.config.freeze_vision_tower = freeze_vision_tower
|
| 187 |
-
|
| 188 |
return dict(
|
| 189 |
image_processor_high=image_processor_high,
|
| 190 |
image_token_len=image_token_len,
|
| 191 |
)
|
| 192 |
-
|
| 193 |
-
|
| 194 |
def forward(
|
| 195 |
self,
|
| 196 |
input_ids: torch.LongTensor = None,
|
|
@@ -209,16 +206,17 @@ class GOTQwenModel(Qwen2Model):
|
|
| 209 |
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
| 210 |
if orig_embeds_params is not None:
|
| 211 |
with torch.no_grad():
|
| 212 |
-
self.get_input_embeddings().weight[:-
|
|
|
|
|
|
|
| 213 |
|
| 214 |
if inputs_embeds is None:
|
| 215 |
inputs_embeds = self.embed_tokens(input_ids)
|
| 216 |
|
| 217 |
-
|
| 218 |
vision_tower_high = getattr(self, 'vision_tower_high', None)
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
|
| 223 |
|
| 224 |
vision_select_layer = getattr(self.config, "vision_select_layer", -1)
|
|
@@ -232,15 +230,15 @@ class GOTQwenModel(Qwen2Model):
|
|
| 232 |
im_start_token = 151857
|
| 233 |
|
| 234 |
im_end_token = 151858
|
| 235 |
-
|
| 236 |
image_features = []
|
| 237 |
-
|
| 238 |
for image in images:
|
| 239 |
P, C, H, W = image.shape
|
| 240 |
if P == 1:
|
| 241 |
with torch.set_grad_enabled(False):
|
| 242 |
cnn_feature = vision_tower_high(image)
|
| 243 |
-
cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1)
|
| 244 |
image_feature = self.mm_projector_vary(cnn_feature)
|
| 245 |
image_features.append(image_feature)
|
| 246 |
|
|
@@ -249,7 +247,7 @@ class GOTQwenModel(Qwen2Model):
|
|
| 249 |
image_patches_features = []
|
| 250 |
for image_patch in image_patches:
|
| 251 |
image_p = torch.stack([image_patch])
|
| 252 |
-
|
| 253 |
with torch.set_grad_enabled(False):
|
| 254 |
cnn_feature_p = vision_tower_high(image_p)
|
| 255 |
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
|
|
@@ -258,39 +256,44 @@ class GOTQwenModel(Qwen2Model):
|
|
| 258 |
image_feature = torch.cat(image_patches_features, dim=1)
|
| 259 |
image_features.append(image_feature)
|
| 260 |
|
| 261 |
-
|
| 262 |
-
|
| 263 |
dummy_image_features = dummy_image_features_2
|
| 264 |
use_im_start_end = True
|
| 265 |
new_input_embeds = []
|
| 266 |
-
for cur_input_ids, cur_input_embeds, cur_image_features in zip(
|
|
|
|
| 267 |
if (cur_input_ids == im_patch_token).sum() == 0:
|
| 268 |
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
| 269 |
new_input_embeds.append(cur_input_embeds)
|
| 270 |
continue
|
| 271 |
|
| 272 |
if use_im_start_end:
|
| 273 |
-
if (cur_input_ids == im_start_token).sum() != (
|
| 274 |
-
|
| 275 |
-
|
|
|
|
|
|
|
| 276 |
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
|
| 277 |
-
for image_start_token_pos, per_cur_image_features in zip(
|
| 278 |
-
|
|
|
|
|
|
|
| 279 |
num_patches = per_cur_image_features.shape[0]
|
| 280 |
|
| 281 |
if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
|
| 282 |
-
raise ValueError(
|
| 283 |
-
|
|
|
|
| 284 |
cur_input_embeds = torch.cat(
|
| 285 |
(
|
| 286 |
-
cur_input_embeds[:image_start_token_pos+1],
|
| 287 |
-
per_cur_image_features,
|
| 288 |
cur_input_embeds[image_start_token_pos + num_patches + 1:]
|
| 289 |
-
),
|
| 290 |
dim=0
|
| 291 |
)
|
| 292 |
|
| 293 |
-
|
| 294 |
new_input_embeds.append(cur_input_embeds)
|
| 295 |
else:
|
| 296 |
raise NotImplementedError
|
|
@@ -299,13 +302,12 @@ class GOTQwenModel(Qwen2Model):
|
|
| 299 |
|
| 300 |
return super(GOTQwenModel, self).forward(
|
| 301 |
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
|
| 302 |
-
inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids
|
| 303 |
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
| 304 |
return_dict=return_dict
|
| 305 |
)
|
| 306 |
|
| 307 |
|
| 308 |
-
|
| 309 |
class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
| 310 |
config_class = GOTConfig
|
| 311 |
# supports_gradient_checkpointing = True
|
|
@@ -336,15 +338,14 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 336 |
output_hidden_states: Optional[bool] = None,
|
| 337 |
images: Optional[torch.FloatTensor] = None,
|
| 338 |
return_dict: Optional[bool] = None,
|
| 339 |
-
|
| 340 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 341 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 342 |
output_hidden_states = (
|
| 343 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 344 |
-
)
|
| 345 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 346 |
|
| 347 |
-
outputs
|
| 348 |
input_ids=input_ids,
|
| 349 |
past_key_values=past_key_values,
|
| 350 |
attention_mask=attention_mask,
|
|
@@ -355,7 +356,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 355 |
output_hidden_states=output_hidden_states,
|
| 356 |
images=images,
|
| 357 |
return_dict=return_dict
|
| 358 |
-
|
| 359 |
)
|
| 360 |
|
| 361 |
hidden_states = outputs[0]
|
|
@@ -389,7 +390,6 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 389 |
attentions=outputs.attentions,
|
| 390 |
)
|
| 391 |
|
| 392 |
-
|
| 393 |
def prepare_inputs_for_generation(
|
| 394 |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 395 |
):
|
|
@@ -408,14 +408,16 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 408 |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 409 |
# input)
|
| 410 |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 411 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length)
|
| 412 |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 413 |
# input_ids based on the past_length.
|
| 414 |
elif past_length < input_ids.shape[1]:
|
| 415 |
input_ids = input_ids[:, past_length:]
|
| 416 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume
|
|
|
|
| 417 |
|
| 418 |
-
# If we are about to go beyond the maximum cache length, we need to crop
|
|
|
|
| 419 |
if (
|
| 420 |
max_cache_length is not None
|
| 421 |
and attention_mask is not None
|
|
@@ -429,7 +431,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 429 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 430 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 431 |
if past_key_values:
|
| 432 |
-
position_ids = position_ids[:, -input_ids.shape[1]
|
| 433 |
|
| 434 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 435 |
if inputs_embeds is not None and past_key_values is None:
|
|
@@ -449,15 +451,13 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 449 |
return model_inputs
|
| 450 |
|
| 451 |
def initialize_vision_tokenizer(
|
| 452 |
-
self,
|
| 453 |
-
tokenizer,
|
| 454 |
-
freeze_lm_model=False,
|
| 455 |
pretrained_stage1_model=None,
|
| 456 |
-
device="cuda"
|
| 457 |
):
|
| 458 |
config = self.get_model().config
|
| 459 |
|
| 460 |
-
|
| 461 |
self.resize_token_embeddings(len(tokenizer))
|
| 462 |
|
| 463 |
config.im_patch_token = 151859
|
|
@@ -484,12 +484,23 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 484 |
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
| 485 |
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
| 486 |
|
| 487 |
-
def chat(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
|
| 489 |
self.disable_torch_init()
|
| 490 |
|
| 491 |
-
|
| 492 |
-
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
| 493 |
|
| 494 |
use_im_start_end = True
|
| 495 |
|
|
@@ -501,7 +512,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 501 |
image = self.load_image(image_file)
|
| 502 |
|
| 503 |
w, h = image.size
|
| 504 |
-
|
| 505 |
if ocr_type == 'format':
|
| 506 |
qs = 'OCR with format: '
|
| 507 |
else:
|
|
@@ -510,13 +521,13 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 510 |
if ocr_box:
|
| 511 |
bbox = eval(ocr_box)
|
| 512 |
if len(bbox) == 2:
|
| 513 |
-
bbox[0] = int(bbox[0]/w*1000)
|
| 514 |
-
bbox[1] = int(bbox[1]/h*1000)
|
| 515 |
if len(bbox) == 4:
|
| 516 |
-
bbox[0] = int(bbox[0]/w*1000)
|
| 517 |
-
bbox[1] = int(bbox[1]/h*1000)
|
| 518 |
-
bbox[2] = int(bbox[2]/w*1000)
|
| 519 |
-
bbox[3] = int(bbox[3]/h*1000)
|
| 520 |
if ocr_type == 'format':
|
| 521 |
qs = str(bbox) + ' ' + 'OCR with format: '
|
| 522 |
else:
|
|
@@ -529,11 +540,11 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 529 |
qs = '[' + ocr_color + ']' + ' ' + 'OCR: '
|
| 530 |
|
| 531 |
if use_im_start_end:
|
| 532 |
-
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*
|
|
|
|
| 533 |
else:
|
| 534 |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
| 535 |
|
| 536 |
-
|
| 537 |
conv_mpt = Conversation(
|
| 538 |
system="""<|im_start|>system
|
| 539 |
You should follow the instructions carefully and explain your answers in detail.""",
|
|
@@ -558,40 +569,42 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 558 |
|
| 559 |
image_tensor_1 = image_processor_high(image)
|
| 560 |
|
| 561 |
-
input_ids = torch.as_tensor(inputs.input_ids).
|
| 562 |
|
| 563 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 564 |
keywords = [stop_str]
|
| 565 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 566 |
-
streamer = TextStreamer(
|
|
|
|
| 567 |
|
|
|
|
| 568 |
if stream_flag:
|
| 569 |
-
with torch.autocast(
|
| 570 |
output_ids = self.generate(
|
| 571 |
input_ids,
|
| 572 |
-
images=[image_tensor_1.unsqueeze(0).half().
|
| 573 |
do_sample=False,
|
| 574 |
-
num_beams
|
| 575 |
-
no_repeat_ngram_size
|
| 576 |
streamer=streamer,
|
| 577 |
max_new_tokens=4096,
|
| 578 |
stopping_criteria=[stopping_criteria]
|
| 579 |
-
|
| 580 |
else:
|
| 581 |
-
with torch.autocast(
|
| 582 |
output_ids = self.generate(
|
| 583 |
input_ids,
|
| 584 |
-
images=[image_tensor_1.unsqueeze(0).half().
|
| 585 |
do_sample=False,
|
| 586 |
-
num_beams
|
| 587 |
-
no_repeat_ngram_size
|
| 588 |
# streamer=streamer,
|
| 589 |
max_new_tokens=4096,
|
| 590 |
stopping_criteria=[stopping_criteria]
|
| 591 |
-
|
| 592 |
-
|
| 593 |
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
| 594 |
-
|
| 595 |
if outputs.endswith(stop_str):
|
| 596 |
outputs = outputs[:-len(stop_str)]
|
| 597 |
outputs = outputs.strip()
|
|
@@ -606,8 +619,8 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 606 |
tk = verovio.toolkit()
|
| 607 |
tk.loadData(outputs)
|
| 608 |
tk.setOptions({"pageWidth": 2100, "footer": 'none',
|
| 609 |
-
|
| 610 |
-
|
| 611 |
tk.getPageCount()
|
| 612 |
svg = tk.renderToSVG()
|
| 613 |
svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")
|
|
@@ -616,35 +629,52 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 616 |
|
| 617 |
if ocr_type == 'format' and '**kern' not in outputs:
|
| 618 |
|
| 619 |
-
|
| 620 |
-
if '\\begin{tikzpicture}' not in outputs:
|
| 621 |
html_path_2 = save_render_file
|
| 622 |
right_num = outputs.count('\\right')
|
| 623 |
-
left_num = outputs.count('
|
| 624 |
|
| 625 |
if right_num != left_num:
|
| 626 |
-
outputs = outputs.replace(
|
| 627 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
|
| 629 |
outputs = outputs.replace('"', '``').replace('$', '')
|
| 630 |
|
| 631 |
outputs_list = outputs.split('\n')
|
| 632 |
-
gt= ''
|
| 633 |
for out in outputs_list:
|
| 634 |
-
gt +=
|
| 635 |
-
|
| 636 |
-
gt = gt[:-2]
|
| 637 |
|
|
|
|
| 638 |
|
| 639 |
lines = content_mmd_to_html
|
| 640 |
lines = lines.split("const text =")
|
| 641 |
-
new_web = lines[0] + 'const text ='
|
| 642 |
|
| 643 |
else:
|
| 644 |
html_path_2 = save_render_file
|
| 645 |
outputs = outputs.translate(translation_table)
|
| 646 |
outputs_list = outputs.split('\n')
|
| 647 |
-
gt= ''
|
| 648 |
for out in outputs_list:
|
| 649 |
if out:
|
| 650 |
if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out:
|
|
@@ -652,7 +682,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 652 |
out = out[:-1]
|
| 653 |
if out is None:
|
| 654 |
break
|
| 655 |
-
|
| 656 |
if out:
|
| 657 |
if out[-1] != ';':
|
| 658 |
gt += out[:-1] + ';\n'
|
|
@@ -661,7 +691,6 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 661 |
else:
|
| 662 |
gt += out + '\n'
|
| 663 |
|
| 664 |
-
|
| 665 |
lines = tik_html
|
| 666 |
lines = lines.split("const text =")
|
| 667 |
new_web = lines[0] + gt + lines[1]
|
|
@@ -671,7 +700,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 671 |
return response_str
|
| 672 |
|
| 673 |
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
|
| 674 |
-
|
| 675 |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 676 |
best_ratio_diff = float('inf')
|
| 677 |
best_ratio = (1, 1)
|
|
@@ -687,14 +716,25 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 687 |
best_ratio = ratio
|
| 688 |
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
| 689 |
return best_ratio
|
| 690 |
-
|
| 691 |
orig_width, orig_height = image.size
|
| 692 |
aspect_ratio = orig_width / orig_height
|
| 693 |
|
| 694 |
# calculate the existing image aspect ratio
|
| 695 |
target_ratios = set(
|
| 696 |
-
(i,
|
| 697 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 698 |
# print(target_ratios)
|
| 699 |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 700 |
|
|
@@ -727,18 +767,25 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 727 |
processed_images.append(thumbnail_img)
|
| 728 |
return processed_images
|
| 729 |
|
| 730 |
-
|
| 731 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 732 |
# Model
|
| 733 |
self.disable_torch_init()
|
| 734 |
-
multi_page=False
|
| 735 |
|
| 736 |
-
|
| 737 |
-
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
| 738 |
|
| 739 |
use_im_start_end = True
|
| 740 |
|
| 741 |
-
|
| 742 |
image_token_len = 256
|
| 743 |
|
| 744 |
image_list = []
|
|
@@ -778,18 +825,16 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 778 |
image_tensor_1 = image_processor_high(image)
|
| 779 |
image_list.append(image_tensor_1)
|
| 780 |
|
| 781 |
-
|
| 782 |
image_list = torch.stack(image_list)
|
| 783 |
|
| 784 |
-
print('====new images batch size======: \n',image_list.shape)
|
| 785 |
-
|
| 786 |
|
| 787 |
if use_im_start_end:
|
| 788 |
-
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*
|
|
|
|
| 789 |
else:
|
| 790 |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
| 791 |
|
| 792 |
-
|
| 793 |
conv_mpt = Conversation(
|
| 794 |
system="""<|im_start|>system
|
| 795 |
You should follow the instructions carefully and explain your answers in detail.""",
|
|
@@ -812,43 +857,45 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 812 |
|
| 813 |
inputs = tokenizer([prompt])
|
| 814 |
|
| 815 |
-
input_ids = torch.as_tensor(inputs.input_ids).
|
| 816 |
|
| 817 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 818 |
keywords = [stop_str]
|
| 819 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 820 |
-
streamer = TextStreamer(
|
|
|
|
| 821 |
|
|
|
|
| 822 |
if stream_flag:
|
| 823 |
-
with torch.autocast(
|
| 824 |
output_ids = self.generate(
|
| 825 |
input_ids,
|
| 826 |
-
images=[image_list.half().
|
| 827 |
do_sample=False,
|
| 828 |
-
num_beams
|
| 829 |
# no_repeat_ngram_size = 20,
|
| 830 |
streamer=streamer,
|
| 831 |
max_new_tokens=4096,
|
| 832 |
stopping_criteria=[stopping_criteria]
|
| 833 |
-
|
| 834 |
else:
|
| 835 |
-
with torch.autocast(
|
| 836 |
output_ids = self.generate(
|
| 837 |
input_ids,
|
| 838 |
-
images=[image_list.half().
|
| 839 |
do_sample=False,
|
| 840 |
-
num_beams
|
| 841 |
# no_repeat_ngram_size = 20,
|
| 842 |
# streamer=streamer,
|
| 843 |
max_new_tokens=4096,
|
| 844 |
stopping_criteria=[stopping_criteria]
|
| 845 |
-
|
| 846 |
|
| 847 |
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
| 848 |
-
|
| 849 |
if outputs.endswith(stop_str):
|
| 850 |
outputs = outputs[:-len(stop_str)]
|
| 851 |
-
outputs = outputs.strip()
|
| 852 |
response_str = outputs
|
| 853 |
|
| 854 |
if render:
|
|
@@ -856,26 +903,45 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
| 856 |
from .render_tools import content_mmd_to_html
|
| 857 |
html_path_2 = save_render_file
|
| 858 |
right_num = outputs.count('\\right')
|
| 859 |
-
left_num = outputs.count('
|
| 860 |
|
| 861 |
if right_num != left_num:
|
| 862 |
-
outputs = outputs.replace(
|
| 863 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 864 |
|
| 865 |
outputs = outputs.replace('"', '``').replace('$', '')
|
| 866 |
|
| 867 |
outputs_list = outputs.split('\n')
|
| 868 |
-
gt= ''
|
| 869 |
for out in outputs_list:
|
| 870 |
-
gt +=
|
| 871 |
-
|
| 872 |
gt = gt[:-2]
|
| 873 |
|
| 874 |
lines = content_mmd_to_html
|
| 875 |
lines = lines.split("const text =")
|
| 876 |
-
new_web = lines[0] + 'const text ='
|
| 877 |
-
|
| 878 |
with open(html_path_2, 'w') as web_f_new:
|
| 879 |
web_f_new.write(new_web)
|
| 880 |
|
| 881 |
-
return response_str
|
|
|
|
| 1 |
+
from enum import auto, Enum
|
| 2 |
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer
|
| 3 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 4 |
from typing import List, Optional, Tuple, Union
|
|
|
|
| 20 |
DEFAULT_IM_START_TOKEN = '<img>'
|
| 21 |
DEFAULT_IM_END_TOKEN = '</img>'
|
| 22 |
|
| 23 |
+
|
| 24 |
class SeparatorStyle(Enum):
|
| 25 |
"""Different separator style."""
|
| 26 |
SINGLE = auto()
|
|
|
|
| 66 |
return ret
|
| 67 |
if self.sep_style == SeparatorStyle.MPT:
|
| 68 |
if self.system:
|
| 69 |
+
ret = self.system + self.sep
|
| 70 |
else:
|
| 71 |
ret = ''
|
| 72 |
for role, message in self.messages:
|
|
|
|
| 80 |
else:
|
| 81 |
raise ValueError(f"Invalid style: {self.sep_style}")
|
| 82 |
|
|
|
|
| 83 |
def append_message(self, role, message):
|
| 84 |
self.messages.append([role, message])
|
| 85 |
|
|
|
|
| 94 |
sep2=self.sep2)
|
| 95 |
|
| 96 |
|
|
|
|
| 97 |
class KeywordsStoppingCriteria(StoppingCriteria):
|
| 98 |
def __init__(self, keywords, tokenizer, input_ids):
|
| 99 |
self.keywords = keywords
|
| 100 |
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
|
| 101 |
+
self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(
|
| 102 |
+
keyword_id) is list and len(keyword_id) == 1]
|
| 103 |
self.tokenizer = tokenizer
|
| 104 |
self.start_len = None
|
| 105 |
self.input_ids = input_ids
|
|
|
|
| 111 |
for keyword_id in self.keyword_ids:
|
| 112 |
if output_ids[0, -1] == keyword_id:
|
| 113 |
return True
|
| 114 |
+
outputs = self.tokenizer.batch_decode(
|
| 115 |
+
output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
| 116 |
for keyword in self.keywords:
|
| 117 |
if keyword in outputs:
|
| 118 |
return True
|
| 119 |
return False
|
| 120 |
+
|
| 121 |
|
| 122 |
class GOTImageEvalProcessor:
|
| 123 |
def __init__(self, image_size=384, mean=None, std=None):
|
|
|
|
| 137 |
self.normalize,
|
| 138 |
]
|
| 139 |
)
|
| 140 |
+
|
| 141 |
def __call__(self, item):
|
| 142 |
return self.transform(item)
|
| 143 |
|
| 144 |
|
|
|
|
| 145 |
class GOTConfig(Qwen2Config):
|
| 146 |
model_type = "GOT"
|
| 147 |
|
|
|
|
| 154 |
|
| 155 |
self.vision_tower_high = build_GOT_vit_b()
|
| 156 |
|
| 157 |
+
self.mm_projector_vary = nn.Linear(1024, 1024)
|
|
|
|
| 158 |
|
| 159 |
def initialize_vision_modules(
|
| 160 |
+
self,
|
| 161 |
vision_tower,
|
| 162 |
pretrained_stage1_model=None,
|
| 163 |
freeze_vision_tower=False,
|
| 164 |
use_im_start_end=False,
|
| 165 |
vision_select_layer=-1,
|
| 166 |
dtype=torch.float16,
|
|
|
|
| 167 |
):
|
| 168 |
|
| 169 |
+
device = self.device
|
| 170 |
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
| 171 |
+
|
| 172 |
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
|
| 173 |
|
| 174 |
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
|
| 175 |
|
|
|
|
| 176 |
image_token_len = 256
|
| 177 |
|
| 178 |
self.config.vision_tower = vision_tower
|
|
|
|
| 182 |
|
| 183 |
self.config.vision_select_layer = vision_select_layer
|
| 184 |
self.config.freeze_vision_tower = freeze_vision_tower
|
| 185 |
+
|
| 186 |
return dict(
|
| 187 |
image_processor_high=image_processor_high,
|
| 188 |
image_token_len=image_token_len,
|
| 189 |
)
|
| 190 |
+
|
|
|
|
| 191 |
def forward(
|
| 192 |
self,
|
| 193 |
input_ids: torch.LongTensor = None,
|
|
|
|
| 206 |
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
| 207 |
if orig_embeds_params is not None:
|
| 208 |
with torch.no_grad():
|
| 209 |
+
self.get_input_embeddings().weight[:-
|
| 210 |
+
self.num_new_tokens] = orig_embeds_params[:-
|
| 211 |
+
self.num_new_tokens].data
|
| 212 |
|
| 213 |
if inputs_embeds is None:
|
| 214 |
inputs_embeds = self.embed_tokens(input_ids)
|
| 215 |
|
|
|
|
| 216 |
vision_tower_high = getattr(self, 'vision_tower_high', None)
|
| 217 |
|
| 218 |
+
if vision_tower_high is not None and (
|
| 219 |
+
input_ids.shape[1] != 1 or self.training) and images is not None:
|
| 220 |
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
|
| 221 |
|
| 222 |
vision_select_layer = getattr(self.config, "vision_select_layer", -1)
|
|
|
|
| 230 |
im_start_token = 151857
|
| 231 |
|
| 232 |
im_end_token = 151858
|
| 233 |
+
|
| 234 |
image_features = []
|
| 235 |
+
|
| 236 |
for image in images:
|
| 237 |
P, C, H, W = image.shape
|
| 238 |
if P == 1:
|
| 239 |
with torch.set_grad_enabled(False):
|
| 240 |
cnn_feature = vision_tower_high(image)
|
| 241 |
+
cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1) # 256*1024
|
| 242 |
image_feature = self.mm_projector_vary(cnn_feature)
|
| 243 |
image_features.append(image_feature)
|
| 244 |
|
|
|
|
| 247 |
image_patches_features = []
|
| 248 |
for image_patch in image_patches:
|
| 249 |
image_p = torch.stack([image_patch])
|
| 250 |
+
|
| 251 |
with torch.set_grad_enabled(False):
|
| 252 |
cnn_feature_p = vision_tower_high(image_p)
|
| 253 |
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
|
|
|
|
| 256 |
image_feature = torch.cat(image_patches_features, dim=1)
|
| 257 |
image_features.append(image_feature)
|
| 258 |
|
| 259 |
+
dummy_image_features_2 = torch.zeros(
|
| 260 |
+
256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
| 261 |
dummy_image_features = dummy_image_features_2
|
| 262 |
use_im_start_end = True
|
| 263 |
new_input_embeds = []
|
| 264 |
+
for cur_input_ids, cur_input_embeds, cur_image_features in zip(
|
| 265 |
+
input_ids, inputs_embeds, image_features):
|
| 266 |
if (cur_input_ids == im_patch_token).sum() == 0:
|
| 267 |
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
| 268 |
new_input_embeds.append(cur_input_embeds)
|
| 269 |
continue
|
| 270 |
|
| 271 |
if use_im_start_end:
|
| 272 |
+
if (cur_input_ids == im_start_token).sum() != (
|
| 273 |
+
cur_input_ids == im_end_token).sum():
|
| 274 |
+
raise ValueError(
|
| 275 |
+
"The number of image start tokens and image end tokens should be the same.")
|
| 276 |
+
|
| 277 |
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
|
| 278 |
+
for image_start_token_pos, per_cur_image_features in zip(
|
| 279 |
+
image_start_tokens, cur_image_features):
|
| 280 |
+
per_cur_image_features = per_cur_image_features.to(
|
| 281 |
+
device=cur_input_embeds.device)
|
| 282 |
num_patches = per_cur_image_features.shape[0]
|
| 283 |
|
| 284 |
if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
|
| 285 |
+
raise ValueError(
|
| 286 |
+
"The image end token should follow the image start token.")
|
| 287 |
+
|
| 288 |
cur_input_embeds = torch.cat(
|
| 289 |
(
|
| 290 |
+
cur_input_embeds[:image_start_token_pos + 1],
|
| 291 |
+
per_cur_image_features,
|
| 292 |
cur_input_embeds[image_start_token_pos + num_patches + 1:]
|
| 293 |
+
),
|
| 294 |
dim=0
|
| 295 |
)
|
| 296 |
|
|
|
|
| 297 |
new_input_embeds.append(cur_input_embeds)
|
| 298 |
else:
|
| 299 |
raise NotImplementedError
|
|
|
|
| 302 |
|
| 303 |
return super(GOTQwenModel, self).forward(
|
| 304 |
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
|
| 305 |
+
inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids=position_ids,
|
| 306 |
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
| 307 |
return_dict=return_dict
|
| 308 |
)
|
| 309 |
|
| 310 |
|
|
|
|
| 311 |
class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
| 312 |
config_class = GOTConfig
|
| 313 |
# supports_gradient_checkpointing = True
|
|
|
|
| 338 |
output_hidden_states: Optional[bool] = None,
|
| 339 |
images: Optional[torch.FloatTensor] = None,
|
| 340 |
return_dict: Optional[bool] = None,
|
| 341 |
+
|
| 342 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 343 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 344 |
output_hidden_states = (
|
| 345 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states)
|
|
|
|
| 346 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 347 |
|
| 348 |
+
outputs = self.model(
|
| 349 |
input_ids=input_ids,
|
| 350 |
past_key_values=past_key_values,
|
| 351 |
attention_mask=attention_mask,
|
|
|
|
| 356 |
output_hidden_states=output_hidden_states,
|
| 357 |
images=images,
|
| 358 |
return_dict=return_dict
|
| 359 |
+
|
| 360 |
)
|
| 361 |
|
| 362 |
hidden_states = outputs[0]
|
|
|
|
| 390 |
attentions=outputs.attentions,
|
| 391 |
)
|
| 392 |
|
|
|
|
| 393 |
def prepare_inputs_for_generation(
|
| 394 |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 395 |
):
|
|
|
|
| 408 |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 409 |
# input)
|
| 410 |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 411 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
| 412 |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 413 |
# input_ids based on the past_length.
|
| 414 |
elif past_length < input_ids.shape[1]:
|
| 415 |
input_ids = input_ids[:, past_length:]
|
| 416 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume
|
| 417 |
+
# input_ids only has unprocessed tokens.
|
| 418 |
|
| 419 |
+
# If we are about to go beyond the maximum cache length, we need to crop
|
| 420 |
+
# the input attention mask.
|
| 421 |
if (
|
| 422 |
max_cache_length is not None
|
| 423 |
and attention_mask is not None
|
|
|
|
| 431 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 432 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 433 |
if past_key_values:
|
| 434 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
| 435 |
|
| 436 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 437 |
if inputs_embeds is not None and past_key_values is None:
|
|
|
|
| 451 |
return model_inputs
|
| 452 |
|
| 453 |
def initialize_vision_tokenizer(
|
| 454 |
+
self,
|
| 455 |
+
tokenizer,
|
| 456 |
+
freeze_lm_model=False,
|
| 457 |
pretrained_stage1_model=None,
|
|
|
|
| 458 |
):
|
| 459 |
config = self.get_model().config
|
| 460 |
|
|
|
|
| 461 |
self.resize_token_embeddings(len(tokenizer))
|
| 462 |
|
| 463 |
config.im_patch_token = 151859
|
|
|
|
| 484 |
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
| 485 |
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
| 486 |
|
| 487 |
+
def chat(
|
| 488 |
+
self,
|
| 489 |
+
tokenizer,
|
| 490 |
+
image_file,
|
| 491 |
+
ocr_type,
|
| 492 |
+
ocr_box='',
|
| 493 |
+
ocr_color='',
|
| 494 |
+
render=False,
|
| 495 |
+
save_render_file=None,
|
| 496 |
+
print_prompt=False,
|
| 497 |
+
gradio_input=False,
|
| 498 |
+
stream_flag=False,
|
| 499 |
+
streamer=None):
|
| 500 |
|
| 501 |
self.disable_torch_init()
|
| 502 |
|
| 503 |
+
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
|
|
|
| 504 |
|
| 505 |
use_im_start_end = True
|
| 506 |
|
|
|
|
| 512 |
image = self.load_image(image_file)
|
| 513 |
|
| 514 |
w, h = image.size
|
| 515 |
+
|
| 516 |
if ocr_type == 'format':
|
| 517 |
qs = 'OCR with format: '
|
| 518 |
else:
|
|
|
|
| 521 |
if ocr_box:
|
| 522 |
bbox = eval(ocr_box)
|
| 523 |
if len(bbox) == 2:
|
| 524 |
+
bbox[0] = int(bbox[0] / w * 1000)
|
| 525 |
+
bbox[1] = int(bbox[1] / h * 1000)
|
| 526 |
if len(bbox) == 4:
|
| 527 |
+
bbox[0] = int(bbox[0] / w * 1000)
|
| 528 |
+
bbox[1] = int(bbox[1] / h * 1000)
|
| 529 |
+
bbox[2] = int(bbox[2] / w * 1000)
|
| 530 |
+
bbox[3] = int(bbox[3] / h * 1000)
|
| 531 |
if ocr_type == 'format':
|
| 532 |
qs = str(bbox) + ' ' + 'OCR with format: '
|
| 533 |
else:
|
|
|
|
| 540 |
qs = '[' + ocr_color + ']' + ' ' + 'OCR: '
|
| 541 |
|
| 542 |
if use_im_start_end:
|
| 543 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * \
|
| 544 |
+
image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs
|
| 545 |
else:
|
| 546 |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
| 547 |
|
|
|
|
| 548 |
conv_mpt = Conversation(
|
| 549 |
system="""<|im_start|>system
|
| 550 |
You should follow the instructions carefully and explain your answers in detail.""",
|
|
|
|
| 569 |
|
| 570 |
image_tensor_1 = image_processor_high(image)
|
| 571 |
|
| 572 |
+
input_ids = torch.as_tensor(inputs.input_ids).to(self.model.device)
|
| 573 |
|
| 574 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 575 |
keywords = [stop_str]
|
| 576 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 577 |
+
streamer = streamer if streamer else TextStreamer(
|
| 578 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 579 |
|
| 580 |
+
device = "cuda" if "cuda" in str(self.model.device) else "cpu"
|
| 581 |
if stream_flag:
|
| 582 |
+
with torch.autocast(device, dtype=torch.bfloat16):
|
| 583 |
output_ids = self.generate(
|
| 584 |
input_ids,
|
| 585 |
+
images=[image_tensor_1.unsqueeze(0).half().to(self.model.device)],
|
| 586 |
do_sample=False,
|
| 587 |
+
num_beams=1,
|
| 588 |
+
no_repeat_ngram_size=20,
|
| 589 |
streamer=streamer,
|
| 590 |
max_new_tokens=4096,
|
| 591 |
stopping_criteria=[stopping_criteria]
|
| 592 |
+
)
|
| 593 |
else:
|
| 594 |
+
with torch.autocast(device, dtype=torch.bfloat16):
|
| 595 |
output_ids = self.generate(
|
| 596 |
input_ids,
|
| 597 |
+
images=[image_tensor_1.unsqueeze(0).half().to(self.model.device)],
|
| 598 |
do_sample=False,
|
| 599 |
+
num_beams=1,
|
| 600 |
+
no_repeat_ngram_size=20,
|
| 601 |
# streamer=streamer,
|
| 602 |
max_new_tokens=4096,
|
| 603 |
stopping_criteria=[stopping_criteria]
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
| 607 |
+
|
| 608 |
if outputs.endswith(stop_str):
|
| 609 |
outputs = outputs[:-len(stop_str)]
|
| 610 |
outputs = outputs.strip()
|
|
|
|
| 619 |
tk = verovio.toolkit()
|
| 620 |
tk.loadData(outputs)
|
| 621 |
tk.setOptions({"pageWidth": 2100, "footer": 'none',
|
| 622 |
+
'barLineWidth': 0.5, 'beamMaxSlope': 15,
|
| 623 |
+
'staffLineWidth': 0.2, 'spacingStaff': 6})
|
| 624 |
tk.getPageCount()
|
| 625 |
svg = tk.renderToSVG()
|
| 626 |
svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")
|
|
|
|
| 629 |
|
| 630 |
if ocr_type == 'format' and '**kern' not in outputs:
|
| 631 |
|
| 632 |
+
if '\\begin{tikzpicture}' not in outputs:
|
|
|
|
| 633 |
html_path_2 = save_render_file
|
| 634 |
right_num = outputs.count('\\right')
|
| 635 |
+
left_num = outputs.count('\\left')
|
| 636 |
|
| 637 |
if right_num != left_num:
|
| 638 |
+
outputs = outputs.replace(
|
| 639 |
+
'\\left(',
|
| 640 |
+
'(').replace(
|
| 641 |
+
'\\right)',
|
| 642 |
+
')').replace(
|
| 643 |
+
'\\left[',
|
| 644 |
+
'[').replace(
|
| 645 |
+
'\\right]',
|
| 646 |
+
']').replace(
|
| 647 |
+
'\\left{',
|
| 648 |
+
'{').replace(
|
| 649 |
+
'\\right}',
|
| 650 |
+
'}').replace(
|
| 651 |
+
'\\left|',
|
| 652 |
+
'|').replace(
|
| 653 |
+
'\\right|',
|
| 654 |
+
'|').replace(
|
| 655 |
+
'\\left.',
|
| 656 |
+
'.').replace(
|
| 657 |
+
'\\right.',
|
| 658 |
+
'.')
|
| 659 |
|
| 660 |
outputs = outputs.replace('"', '``').replace('$', '')
|
| 661 |
|
| 662 |
outputs_list = outputs.split('\n')
|
| 663 |
+
gt = ''
|
| 664 |
for out in outputs_list:
|
| 665 |
+
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
|
|
|
|
|
|
| 666 |
|
| 667 |
+
gt = gt[:-2]
|
| 668 |
|
| 669 |
lines = content_mmd_to_html
|
| 670 |
lines = lines.split("const text =")
|
| 671 |
+
new_web = lines[0] + 'const text =' + gt + lines[1]
|
| 672 |
|
| 673 |
else:
|
| 674 |
html_path_2 = save_render_file
|
| 675 |
outputs = outputs.translate(translation_table)
|
| 676 |
outputs_list = outputs.split('\n')
|
| 677 |
+
gt = ''
|
| 678 |
for out in outputs_list:
|
| 679 |
if out:
|
| 680 |
if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out:
|
|
|
|
| 682 |
out = out[:-1]
|
| 683 |
if out is None:
|
| 684 |
break
|
| 685 |
+
|
| 686 |
if out:
|
| 687 |
if out[-1] != ';':
|
| 688 |
gt += out[:-1] + ';\n'
|
|
|
|
| 691 |
else:
|
| 692 |
gt += out + '\n'
|
| 693 |
|
|
|
|
| 694 |
lines = tik_html
|
| 695 |
lines = lines.split("const text =")
|
| 696 |
new_web = lines[0] + gt + lines[1]
|
|
|
|
| 700 |
return response_str
|
| 701 |
|
| 702 |
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
|
| 703 |
+
|
| 704 |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 705 |
best_ratio_diff = float('inf')
|
| 706 |
best_ratio = (1, 1)
|
|
|
|
| 716 |
best_ratio = ratio
|
| 717 |
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
| 718 |
return best_ratio
|
| 719 |
+
|
| 720 |
orig_width, orig_height = image.size
|
| 721 |
aspect_ratio = orig_width / orig_height
|
| 722 |
|
| 723 |
# calculate the existing image aspect ratio
|
| 724 |
target_ratios = set(
|
| 725 |
+
(i,
|
| 726 |
+
j) for n in range(
|
| 727 |
+
min_num,
|
| 728 |
+
max_num +
|
| 729 |
+
1) for i in range(
|
| 730 |
+
1,
|
| 731 |
+
n +
|
| 732 |
+
1) for j in range(
|
| 733 |
+
1,
|
| 734 |
+
n +
|
| 735 |
+
1) if i *
|
| 736 |
+
j <= max_num and i *
|
| 737 |
+
j >= min_num)
|
| 738 |
# print(target_ratios)
|
| 739 |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 740 |
|
|
|
|
| 767 |
processed_images.append(thumbnail_img)
|
| 768 |
return processed_images
|
| 769 |
|
| 770 |
+
def chat_crop(
|
| 771 |
+
self,
|
| 772 |
+
tokenizer,
|
| 773 |
+
image_file,
|
| 774 |
+
ocr_type,
|
| 775 |
+
render=False,
|
| 776 |
+
save_render_file=None,
|
| 777 |
+
print_prompt=False,
|
| 778 |
+
gradio_input=False,
|
| 779 |
+
stream_flag=False,
|
| 780 |
+
streamer=None):
|
| 781 |
# Model
|
| 782 |
self.disable_torch_init()
|
| 783 |
+
multi_page = False
|
| 784 |
|
| 785 |
+
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
|
|
|
| 786 |
|
| 787 |
use_im_start_end = True
|
| 788 |
|
|
|
|
| 789 |
image_token_len = 256
|
| 790 |
|
| 791 |
image_list = []
|
|
|
|
| 825 |
image_tensor_1 = image_processor_high(image)
|
| 826 |
image_list.append(image_tensor_1)
|
| 827 |
|
|
|
|
| 828 |
image_list = torch.stack(image_list)
|
| 829 |
|
| 830 |
+
print('====new images batch size======: \n', image_list.shape)
|
|
|
|
| 831 |
|
| 832 |
if use_im_start_end:
|
| 833 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * \
|
| 834 |
+
image_token_len * ll + DEFAULT_IM_END_TOKEN + '\n' + qs
|
| 835 |
else:
|
| 836 |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
| 837 |
|
|
|
|
| 838 |
conv_mpt = Conversation(
|
| 839 |
system="""<|im_start|>system
|
| 840 |
You should follow the instructions carefully and explain your answers in detail.""",
|
|
|
|
| 857 |
|
| 858 |
inputs = tokenizer([prompt])
|
| 859 |
|
| 860 |
+
input_ids = torch.as_tensor(inputs.input_ids).to(self.model.device)
|
| 861 |
|
| 862 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 863 |
keywords = [stop_str]
|
| 864 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 865 |
+
streamer = streamer if streamer else TextStreamer(
|
| 866 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 867 |
|
| 868 |
+
device = "cuda" if "cuda" in str(self.model.device) else "cpu"
|
| 869 |
if stream_flag:
|
| 870 |
+
with torch.autocast(device, dtype=torch.bfloat16):
|
| 871 |
output_ids = self.generate(
|
| 872 |
input_ids,
|
| 873 |
+
images=[image_list.half().to(self.model.device)],
|
| 874 |
do_sample=False,
|
| 875 |
+
num_beams=1,
|
| 876 |
# no_repeat_ngram_size = 20,
|
| 877 |
streamer=streamer,
|
| 878 |
max_new_tokens=4096,
|
| 879 |
stopping_criteria=[stopping_criteria]
|
| 880 |
+
)
|
| 881 |
else:
|
| 882 |
+
with torch.autocast(device, dtype=torch.bfloat16):
|
| 883 |
output_ids = self.generate(
|
| 884 |
input_ids,
|
| 885 |
+
images=[image_list.half().to(self.model.device)],
|
| 886 |
do_sample=False,
|
| 887 |
+
num_beams=1,
|
| 888 |
# no_repeat_ngram_size = 20,
|
| 889 |
# streamer=streamer,
|
| 890 |
max_new_tokens=4096,
|
| 891 |
stopping_criteria=[stopping_criteria]
|
| 892 |
+
)
|
| 893 |
|
| 894 |
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
| 895 |
+
|
| 896 |
if outputs.endswith(stop_str):
|
| 897 |
outputs = outputs[:-len(stop_str)]
|
| 898 |
+
outputs = outputs.strip()
|
| 899 |
response_str = outputs
|
| 900 |
|
| 901 |
if render:
|
|
|
|
| 903 |
from .render_tools import content_mmd_to_html
|
| 904 |
html_path_2 = save_render_file
|
| 905 |
right_num = outputs.count('\\right')
|
| 906 |
+
left_num = outputs.count('\\left')
|
| 907 |
|
| 908 |
if right_num != left_num:
|
| 909 |
+
outputs = outputs.replace(
|
| 910 |
+
'\\left(',
|
| 911 |
+
'(').replace(
|
| 912 |
+
'\\right)',
|
| 913 |
+
')').replace(
|
| 914 |
+
'\\left[',
|
| 915 |
+
'[').replace(
|
| 916 |
+
'\\right]',
|
| 917 |
+
']').replace(
|
| 918 |
+
'\\left{',
|
| 919 |
+
'{').replace(
|
| 920 |
+
'\\right}',
|
| 921 |
+
'}').replace(
|
| 922 |
+
'\\left|',
|
| 923 |
+
'|').replace(
|
| 924 |
+
'\\right|',
|
| 925 |
+
'|').replace(
|
| 926 |
+
'\\left.',
|
| 927 |
+
'.').replace(
|
| 928 |
+
'\\right.',
|
| 929 |
+
'.')
|
| 930 |
|
| 931 |
outputs = outputs.replace('"', '``').replace('$', '')
|
| 932 |
|
| 933 |
outputs_list = outputs.split('\n')
|
| 934 |
+
gt = ''
|
| 935 |
for out in outputs_list:
|
| 936 |
+
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
| 937 |
+
|
| 938 |
gt = gt[:-2]
|
| 939 |
|
| 940 |
lines = content_mmd_to_html
|
| 941 |
lines = lines.split("const text =")
|
| 942 |
+
new_web = lines[0] + 'const text =' + gt + lines[1]
|
| 943 |
+
|
| 944 |
with open(html_path_2, 'w') as web_f_new:
|
| 945 |
web_f_new.write(new_web)
|
| 946 |
|
| 947 |
+
return response_str
|