Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<h1>A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone</h1>
|
| 2 |
+
|
| 3 |
+
[GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/tree/main)
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
## Usage
|
| 8 |
+
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:
|
| 9 |
+
```
|
| 10 |
+
torch==2.0.1
|
| 11 |
+
torchvision==0.15.2
|
| 12 |
+
transformers==4.37.2
|
| 13 |
+
megfile==3.1.2
|
| 14 |
+
```
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
```python
|
| 18 |
+
# test.py
|
| 19 |
+
import torch
|
| 20 |
+
from PIL import Image
|
| 21 |
+
from transformers import AutoModel, AutoTokenizer
|
| 22 |
+
|
| 23 |
+
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True,
|
| 24 |
+
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
|
| 25 |
+
model = model.eval().cuda()
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
|
| 27 |
+
|
| 28 |
+
image = Image.open('xx.jpg').convert('RGB')
|
| 29 |
+
question = 'What is in the image?'
|
| 30 |
+
msgs = [{'role': 'user', 'content': [image, question]}]
|
| 31 |
+
|
| 32 |
+
res = model.chat(
|
| 33 |
+
image=None,
|
| 34 |
+
msgs=msgs,
|
| 35 |
+
tokenizer=tokenizer
|
| 36 |
+
)
|
| 37 |
+
print(res)
|
| 38 |
+
|
| 39 |
+
## if you want to use streaming, please make sure sampling=True and stream=True
|
| 40 |
+
## the model.chat will return a generator
|
| 41 |
+
res = model.chat(
|
| 42 |
+
image=None,
|
| 43 |
+
msgs=msgs,
|
| 44 |
+
tokenizer=tokenizer,
|
| 45 |
+
sampling=True,
|
| 46 |
+
stream=True
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
generated_text = ""
|
| 50 |
+
for new_text in res:
|
| 51 |
+
generated_text += new_text
|
| 52 |
+
print(new_text, flush=True, end='')
|
| 53 |
+
```
|