File size: 2,239 Bytes
			
			ae40d90 d285eea ae40d90 d285eea 7e14e7a d285eea  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75  | 
								---
library_name: transformers
tags: []
---
# Mamba
<!-- Provide a quick summary of what the model is/does. -->
This repository contains the `transfromers` compatible `mamba-2.8b`. The checkpoints are untouched, but the full `config.json` and tokenizer are pushed to this repo. 
# Usage
You need to install `transformers` from `main` until `transformers=4.39.0` is released. 
```bash
pip install git+https://github.com/huggingface/transformers@main
```
We also recommend you to install both `causal_conv_1d` and `mamba-ssm` using: 
```bash
pip install causal-conv1d>=1.2.0
pip install mamba-ssm
```
If any of these two is not installed, the "eager" implementation will be used. Otherwise the more optimised `cuda` kernels will be used.
## Generation
You can use the classic `generate` API:
```python
from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-790m-hf")
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-790m-hf")
input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"]
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
```
## PEFT finetuning example
In order to finetune using the `peft` library, we recommend keeping the model in float32!
```python
from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-790m-hf")
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-790m-hf")
dataset = load_dataset("Abirate/english_quotes", split="train")
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=4,
    logging_dir='./logs',
    logging_steps=10,
    learning_rate=2e-3
)
lora_config =  LoraConfig(
        r=8,
        target_modules="all-linear",
        task_type="CAUSAL_LM",
        bias="none"
)
trainer = SFTTrainer(
    model=model,
    tokenizer=tokenizer,
    args=training_args,
    peft_config=lora_config,
    train_dataset=dataset,
    dataset_text_field="quote",
)
trainer.train()
``` |