Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -27,15 +27,16 @@ If any of these two is not installed, the "eager" implementation will be used. O | |
| 27 | 
             
            ## Generation
         | 
| 28 | 
             
            You can use the classic `generate` API:
         | 
| 29 | 
             
            ```python
         | 
| 30 | 
            -
            from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
         | 
| 31 | 
            -
            import torch
         | 
| 32 |  | 
| 33 | 
            -
            tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-1.4b-hf")
         | 
| 34 | 
            -
            model = MambaForCausalLM.from_pretrained("state-spaces/mamba-1.4b-hf")
         | 
| 35 | 
            -
            input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"]
         | 
| 36 |  | 
| 37 | 
            -
            out = model.generate(input_ids, max_new_tokens=10)
         | 
| 38 | 
            -
            print(tokenizer.batch_decode(out))
         | 
|  | |
| 39 | 
             
            ```
         | 
| 40 |  | 
| 41 | 
             
            ## PEFT finetuning example
         | 
|  | |
| 27 | 
             
            ## Generation
         | 
| 28 | 
             
            You can use the classic `generate` API:
         | 
| 29 | 
             
            ```python
         | 
| 30 | 
            +
            >>> from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
         | 
| 31 | 
            +
            >>> import torch
         | 
| 32 |  | 
| 33 | 
            +
            >>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-1.4b-hf")
         | 
| 34 | 
            +
            >>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-1.4b-hf")
         | 
| 35 | 
            +
            >>> input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"]
         | 
| 36 |  | 
| 37 | 
            +
            >>> out = model.generate(input_ids, max_new_tokens=10)
         | 
| 38 | 
            +
            >>> print(tokenizer.batch_decode(out))
         | 
| 39 | 
            +
            ["Hey how are you doing?\n\nI'm doing great.\n\nI"]
         | 
| 40 | 
             
            ```
         | 
| 41 |  | 
| 42 | 
             
            ## PEFT finetuning example
         | 
