Update README.md
Browse files
README.md
CHANGED
|
@@ -16,11 +16,11 @@ metrics:
|
|
| 16 |
- code_eval
|
| 17 |
library_name: transformers
|
| 18 |
---
|
| 19 |
-
# `stable-code-
|
| 20 |
|
| 21 |
## Model Description
|
| 22 |
|
| 23 |
-
`stable-code-
|
| 24 |
|
| 25 |
**Key Features**
|
| 26 |
* Fill in Middle Capability (FIM)
|
|
@@ -28,23 +28,19 @@ library_name: transformers
|
|
| 28 |
|
| 29 |
## Usage
|
| 30 |
|
| 31 |
-
Get started generating text with `stable-code-
|
| 32 |
|
| 33 |
```python
|
| 34 |
import torch
|
| 35 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 36 |
-
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-
|
| 37 |
model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
-
"stabilityai/stable-code-
|
| 39 |
trust_remote_code=True,
|
| 40 |
torch_dtype="auto",
|
| 41 |
)
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
if torch.cuda.is_available():
|
| 45 |
-
device = "cuda"
|
| 46 |
-
|
| 47 |
-
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(device)
|
| 48 |
tokens = model.generate(
|
| 49 |
**inputs,
|
| 50 |
max_new_tokens=48,
|
|
@@ -61,19 +57,15 @@ print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
|
| 61 |
|
| 62 |
```python
|
| 63 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 64 |
-
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-
|
| 65 |
model = AutoModelForCausalLM.from_pretrained(
|
| 66 |
-
"stabilityai/stable-code-
|
| 67 |
trust_remote_code=True,
|
| 68 |
torch_dtype="auto",
|
| 69 |
+ attn_implementation="flash_attention_2",
|
| 70 |
)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
if torch.cuda.is_available():
|
| 74 |
-
device = "cuda"
|
| 75 |
-
|
| 76 |
-
inputs = tokenizer("<fim_prefix>def fib(n):<fim_suffix> else:\n return fib(n - 2) + fib(n - 1)<fim_middle>", return_tensors="pt").to("cuda")
|
| 77 |
tokens = model.generate(
|
| 78 |
**inputs,
|
| 79 |
max_new_tokens=48,
|
|
@@ -92,19 +84,15 @@ print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
|
| 92 |
|
| 93 |
```python
|
| 94 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 95 |
-
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-
|
| 96 |
model = AutoModelForCausalLM.from_pretrained(
|
| 97 |
-
"stabilityai/stable-code-
|
| 98 |
trust_remote_code=True,
|
| 99 |
torch_dtype="auto",
|
| 100 |
+ attn_implementation="flash_attention_2",
|
| 101 |
)
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
if torch.cuda.is_available():
|
| 105 |
-
device = "cuda"
|
| 106 |
-
|
| 107 |
-
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to("cuda")
|
| 108 |
tokens = model.generate(
|
| 109 |
**inputs,
|
| 110 |
max_new_tokens=48,
|
|
@@ -120,7 +108,7 @@ print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
|
| 120 |
## Model Details
|
| 121 |
|
| 122 |
* **Developed by**: [Stability AI](https://stability.ai/)
|
| 123 |
-
* **Model type**: `stable-code-
|
| 124 |
* **Language(s)**: English, Code
|
| 125 |
* **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
|
| 126 |
* **License**: Other
|
|
@@ -149,7 +137,7 @@ The model is pre-trained on the aforementioned datasets in `bfloat16` precision,
|
|
| 149 |
|
| 150 |
### Training Infrastructure
|
| 151 |
|
| 152 |
-
* **Hardware**: `stable-code-
|
| 153 |
|
| 154 |
* **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf))
|
| 155 |
|
|
@@ -166,9 +154,9 @@ As a base model, this model may exhibit unreliable, unsafe, or other undesirable
|
|
| 166 |
## How to Cite
|
| 167 |
|
| 168 |
```bibtex
|
| 169 |
-
@misc{stable-code-
|
| 170 |
-
url={[https://huggingface.co/stabilityai/stable-code-
|
| 171 |
title={Stable Code 3B},
|
| 172 |
author={Pinnaparaju, Nikhil and Adithyan, Reshinth and Phung, Duy and Tow, Jonathan and Baicoianu, James and and Cooper, Nathan}
|
| 173 |
}
|
| 174 |
-
```
|
|
|
|
| 16 |
- code_eval
|
| 17 |
library_name: transformers
|
| 18 |
---
|
| 19 |
+
# `stable-code-3b`
|
| 20 |
|
| 21 |
## Model Description
|
| 22 |
|
| 23 |
+
`stable-code-3b` is a 2.7B billion parameter decoder-only language model pre-trained on 1.3 trillion tokens of diverse textual and code datasets. `stable-code-3b` is trained on nearly 20 programming languages (selected based on the 2023 StackOverflow Developer Survey) and demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using [BigCode's Evaluation Harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main).
|
| 24 |
|
| 25 |
**Key Features**
|
| 26 |
* Fill in Middle Capability (FIM)
|
|
|
|
| 28 |
|
| 29 |
## Usage
|
| 30 |
|
| 31 |
+
Get started generating text with `stable-code-3b` by using the following code snippet:
|
| 32 |
|
| 33 |
```python
|
| 34 |
import torch
|
| 35 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True)
|
| 37 |
model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
+
"stabilityai/stable-code-3b",
|
| 39 |
trust_remote_code=True,
|
| 40 |
torch_dtype="auto",
|
| 41 |
)
|
| 42 |
+
model.cuda()
|
| 43 |
+
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
tokens = model.generate(
|
| 45 |
**inputs,
|
| 46 |
max_new_tokens=48,
|
|
|
|
| 57 |
|
| 58 |
```python
|
| 59 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True)
|
| 61 |
model = AutoModelForCausalLM.from_pretrained(
|
| 62 |
+
"stabilityai/stable-code-3b",
|
| 63 |
trust_remote_code=True,
|
| 64 |
torch_dtype="auto",
|
| 65 |
+ attn_implementation="flash_attention_2",
|
| 66 |
)
|
| 67 |
+
model.cuda()
|
| 68 |
+
inputs = tokenizer("<fim_prefix>def fib(n):<fim_suffix> else:\n return fib(n - 2) + fib(n - 1)<fim_middle>", return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
tokens = model.generate(
|
| 70 |
**inputs,
|
| 71 |
max_new_tokens=48,
|
|
|
|
| 84 |
|
| 85 |
```python
|
| 86 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 87 |
+
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True)
|
| 88 |
model = AutoModelForCausalLM.from_pretrained(
|
| 89 |
+
"stabilityai/stable-code-3b",
|
| 90 |
trust_remote_code=True,
|
| 91 |
torch_dtype="auto",
|
| 92 |
+ attn_implementation="flash_attention_2",
|
| 93 |
)
|
| 94 |
+
model.cuda()
|
| 95 |
+
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
tokens = model.generate(
|
| 97 |
**inputs,
|
| 98 |
max_new_tokens=48,
|
|
|
|
| 108 |
## Model Details
|
| 109 |
|
| 110 |
* **Developed by**: [Stability AI](https://stability.ai/)
|
| 111 |
+
* **Model type**: `stable-code-3b` models are auto-regressive language models based on the transformer decoder architecture.
|
| 112 |
* **Language(s)**: English, Code
|
| 113 |
* **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
|
| 114 |
* **License**: Other
|
|
|
|
| 137 |
|
| 138 |
### Training Infrastructure
|
| 139 |
|
| 140 |
+
* **Hardware**: `stable-code-3b` was trained on the Stability AI cluster across 256 NVIDIA A100 40GB GPUs (AWS P4d instances).
|
| 141 |
|
| 142 |
* **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf))
|
| 143 |
|
|
|
|
| 154 |
## How to Cite
|
| 155 |
|
| 156 |
```bibtex
|
| 157 |
+
@misc{stable-code-3b,
|
| 158 |
+
url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-3b)},
|
| 159 |
title={Stable Code 3B},
|
| 160 |
author={Pinnaparaju, Nikhil and Adithyan, Reshinth and Phung, Duy and Tow, Jonathan and Baicoianu, James and and Cooper, Nathan}
|
| 161 |
}
|
| 162 |
+
```
|