ssarathi commited on
Commit
bf147eb
·
verified ·
1 Parent(s): 90ca2a3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - summarization
6
+ - nlp
7
+ - transformer
8
+ - text-generation
9
+ - huggingface
10
+ datasets:
11
+ - cnn_dailymail
12
+ metrics:
13
+ - rouge
14
+ widget:
15
+ - text: "The quick brown fox jumps over the lazy dog. This is a sample article for testing summarization."
16
+ ---
17
+
18
+ # Text Summarization Model
19
+
20
+ ## Model Overview
21
+ This is a **text summarization model** built using a Seq2Seq architecture.
22
+ It was trained on the **CNN/DailyMail dataset (3.0.0)** and is capable of generating concise summaries of news articles or other long-form texts.
23
+
24
+ **Intended Use:**
25
+ - Summarizing articles, documents, or reports.
26
+ - Extracting key points from text for quick understanding.
27
+
28
+ **Limitations & Biases:**
29
+ - May struggle with extremely long articles or highly technical content.
30
+ - Generated summaries may occasionally miss nuanced details.
31
+
32
+ ---
33
+
34
+
35
+ ## Training Details
36
+ - **Dataset**: CNN/DailyMail (3.0.0 version)
37
+ - **Preprocessing**: Truncation at 512 tokens for input, summaries capped at 150 tokens.
38
+ - **Hyperparameters**:
39
+ - Optimizer: AdamW (PyTorch)
40
+ - Learning rate: 2e-5
41
+ - Batch size: 4 (per device)
42
+ - Epochs: 10
43
+ - **Evaluation Metrics**: ROUGE-1, ROUGE-2, ROUGE-L
44
+
45
+ ---
46
+
47
+ ## Evaluation Results
48
+ | Metric | Score (%) |
49
+ |-----------|-----------|
50
+ | ROUGE-1 | 83.3 |
51
+ | ROUGE-2 | 60.0 |
52
+ | ROUGE-L | 83.3 |
53
+ | ROUGE-Lsum| 83.3 |
54
+
55
+
56
+ ---
57
+
58
+ ## Example Usage
59
+ ```python
60
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
61
+
62
+ tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name")
63
+ model = AutoModelForSeq2SeqLM.from_pretrained("your-username/your-model-name")
64
+
65
+ text = "The stock market saw a significant drop today due to rising inflation concerns. Investors are cautious ahead of the Federal Reserve's upcoming decision."
66
+
67
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
68
+ summary_ids = model.generate(**inputs, max_length=150, num_beams=4, early_stopping=True)
69
+
70
+ print(tokenizer.decode(summary_ids[0], skip_special_tokens=True))