use Generic interface with custom external Predictor
Browse files- README.md +4 -2
- custom_interface.py +158 -0
- hyperparams.yaml +6 -1
README.md
CHANGED
|
@@ -52,9 +52,11 @@ Please notice that we encourage you to read our tutorials and learn more about
|
|
| 52 |
|
| 53 |
### Perform Emotion recognition
|
| 54 |
|
|
|
|
|
|
|
| 55 |
```python
|
| 56 |
-
from speechbrain.pretrained.interfaces import
|
| 57 |
-
classifier =
|
| 58 |
out_prob, score, index, text_lab = classifier.classify_file("speechbrain/emotion-recognition-wav2vec2-IEMOCAP/anger.wav")
|
| 59 |
print(text_lab)
|
| 60 |
```
|
|
|
|
| 52 |
|
| 53 |
### Perform Emotion recognition
|
| 54 |
|
| 55 |
+
An external `py_module_file=custom.py` is used as an external Predictor class into this HF repos. We use `foreign_class` function from `speechbrain.pretrained.interfaces` that allow you to load you custom model.
|
| 56 |
+
|
| 57 |
```python
|
| 58 |
+
from speechbrain.pretrained.interfaces import foreign_class
|
| 59 |
+
classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
| 60 |
out_prob, score, index, text_lab = classifier.classify_file("speechbrain/emotion-recognition-wav2vec2-IEMOCAP/anger.wav")
|
| 61 |
print(text_lab)
|
| 62 |
```
|
custom_interface.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from speechbrain.pretrained import Pretrained
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class CustomEncoderWav2vec2Classifier(Pretrained):
|
| 6 |
+
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
| 7 |
+
language-id, emotion recognition, keyword spotting, etc).
|
| 8 |
+
|
| 9 |
+
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
|
| 10 |
+
are defined in the yaml file. If you want to
|
| 11 |
+
convert the predicted index into a corresponding text label, please
|
| 12 |
+
provide the path of the label_encoder in a variable called 'lab_encoder_file'
|
| 13 |
+
within the yaml.
|
| 14 |
+
|
| 15 |
+
The class can be used either to run only the encoder (encode_batch()) to
|
| 16 |
+
extract embeddings or to run a classification step (classify_batch()).
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
Example
|
| 20 |
+
-------
|
| 21 |
+
>>> import torchaudio
|
| 22 |
+
>>> from speechbrain.pretrained import EncoderClassifier
|
| 23 |
+
>>> # Model is downloaded from the speechbrain HuggingFace repo
|
| 24 |
+
>>> tmpdir = getfixture("tmpdir")
|
| 25 |
+
>>> classifier = EncoderClassifier.from_hparams(
|
| 26 |
+
... source="speechbrain/spkrec-ecapa-voxceleb",
|
| 27 |
+
... savedir=tmpdir,
|
| 28 |
+
... )
|
| 29 |
+
|
| 30 |
+
>>> # Compute embeddings
|
| 31 |
+
>>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav")
|
| 32 |
+
>>> embeddings = classifier.encode_batch(signal)
|
| 33 |
+
|
| 34 |
+
>>> # Classification
|
| 35 |
+
>>> prediction = classifier .classify_batch(signal)
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(self, *args, **kwargs):
|
| 39 |
+
super().__init__(*args, **kwargs)
|
| 40 |
+
|
| 41 |
+
def encode_batch(self, wavs, wav_lens=None, normalize=False):
|
| 42 |
+
"""Encodes the input audio into a single vector embedding.
|
| 43 |
+
|
| 44 |
+
The waveforms should already be in the model's desired format.
|
| 45 |
+
You can call:
|
| 46 |
+
``normalized = <this>.normalizer(signal, sample_rate)``
|
| 47 |
+
to get a correctly converted signal in most cases.
|
| 48 |
+
|
| 49 |
+
Arguments
|
| 50 |
+
---------
|
| 51 |
+
wavs : torch.tensor
|
| 52 |
+
Batch of waveforms [batch, time, channels] or [batch, time]
|
| 53 |
+
depending on the model. Make sure the sample rate is fs=16000 Hz.
|
| 54 |
+
wav_lens : torch.tensor
|
| 55 |
+
Lengths of the waveforms relative to the longest one in the
|
| 56 |
+
batch, tensor of shape [batch]. The longest one should have
|
| 57 |
+
relative length 1.0 and others len(waveform) / max_length.
|
| 58 |
+
Used for ignoring padding.
|
| 59 |
+
normalize : bool
|
| 60 |
+
If True, it normalizes the embeddings with the statistics
|
| 61 |
+
contained in mean_var_norm_emb.
|
| 62 |
+
|
| 63 |
+
Returns
|
| 64 |
+
-------
|
| 65 |
+
torch.tensor
|
| 66 |
+
The encoded batch
|
| 67 |
+
"""
|
| 68 |
+
# Manage single waveforms in input
|
| 69 |
+
if len(wavs.shape) == 1:
|
| 70 |
+
wavs = wavs.unsqueeze(0)
|
| 71 |
+
|
| 72 |
+
# Assign full length if wav_lens is not assigned
|
| 73 |
+
if wav_lens is None:
|
| 74 |
+
wav_lens = torch.ones(wavs.shape[0], device=self.device)
|
| 75 |
+
|
| 76 |
+
# Storing waveform in the specified device
|
| 77 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
| 78 |
+
wavs = wavs.float()
|
| 79 |
+
|
| 80 |
+
# Computing features and embeddings
|
| 81 |
+
outputs = self.mods.wav2vec2(wavs)
|
| 82 |
+
|
| 83 |
+
# last dim will be used for AdaptativeAVG pool
|
| 84 |
+
outputs = self.mods.avg_pool(outputs, wav_lens)
|
| 85 |
+
outputs = outputs.view(outputs.shape[0], -1)
|
| 86 |
+
return outputs
|
| 87 |
+
|
| 88 |
+
def classify_batch(self, wavs, wav_lens=None):
|
| 89 |
+
"""Performs classification on the top of the encoded features.
|
| 90 |
+
|
| 91 |
+
It returns the posterior probabilities, the index and, if the label
|
| 92 |
+
encoder is specified it also the text label.
|
| 93 |
+
|
| 94 |
+
Arguments
|
| 95 |
+
---------
|
| 96 |
+
wavs : torch.tensor
|
| 97 |
+
Batch of waveforms [batch, time, channels] or [batch, time]
|
| 98 |
+
depending on the model. Make sure the sample rate is fs=16000 Hz.
|
| 99 |
+
wav_lens : torch.tensor
|
| 100 |
+
Lengths of the waveforms relative to the longest one in the
|
| 101 |
+
batch, tensor of shape [batch]. The longest one should have
|
| 102 |
+
relative length 1.0 and others len(waveform) / max_length.
|
| 103 |
+
Used for ignoring padding.
|
| 104 |
+
|
| 105 |
+
Returns
|
| 106 |
+
-------
|
| 107 |
+
out_prob
|
| 108 |
+
The log posterior probabilities of each class ([batch, N_class])
|
| 109 |
+
score:
|
| 110 |
+
It is the value of the log-posterior for the best class ([batch,])
|
| 111 |
+
index
|
| 112 |
+
The indexes of the best class ([batch,])
|
| 113 |
+
text_lab:
|
| 114 |
+
List with the text labels corresponding to the indexes.
|
| 115 |
+
(label encoder should be provided).
|
| 116 |
+
"""
|
| 117 |
+
outputs = self.encode_batch(wavs, wav_lens)
|
| 118 |
+
outputs = self.mods.output_mlp(outputs)
|
| 119 |
+
out_prob = self.hparams.softmax(outputs)
|
| 120 |
+
score, index = torch.max(out_prob, dim=-1)
|
| 121 |
+
text_lab = self.hparams.label_encoder.decode_torch(index)
|
| 122 |
+
return out_prob, score, index, text_lab
|
| 123 |
+
|
| 124 |
+
def classify_file(self, path):
|
| 125 |
+
"""Classifies the given audiofile into the given set of labels.
|
| 126 |
+
|
| 127 |
+
Arguments
|
| 128 |
+
---------
|
| 129 |
+
path : str
|
| 130 |
+
Path to audio file to classify.
|
| 131 |
+
|
| 132 |
+
Returns
|
| 133 |
+
-------
|
| 134 |
+
out_prob
|
| 135 |
+
The log posterior probabilities of each class ([batch, N_class])
|
| 136 |
+
score:
|
| 137 |
+
It is the value of the log-posterior for the best class ([batch,])
|
| 138 |
+
index
|
| 139 |
+
The indexes of the best class ([batch,])
|
| 140 |
+
text_lab:
|
| 141 |
+
List with the text labels corresponding to the indexes.
|
| 142 |
+
(label encoder should be provided).
|
| 143 |
+
"""
|
| 144 |
+
waveform = self.load_audio(path)
|
| 145 |
+
# Fake a batch:
|
| 146 |
+
batch = waveform.unsqueeze(0)
|
| 147 |
+
rel_length = torch.tensor([1.0])
|
| 148 |
+
outputs = self.encode_batch(batch, rel_length)
|
| 149 |
+
outputs = self.mods.output_mlp(outputs).squeeze(1)
|
| 150 |
+
out_prob = self.hparams.softmax(outputs)
|
| 151 |
+
score, index = torch.max(out_prob, dim=-1)
|
| 152 |
+
text_lab = self.hparams.label_encoder.decode_torch(index)
|
| 153 |
+
return out_prob, score, index, text_lab
|
| 154 |
+
|
| 155 |
+
def forward(self, wavs, wav_lens=None, normalize=False):
|
| 156 |
+
return self.encode_batch(
|
| 157 |
+
wavs=wavs, wav_lens=wav_lens, normalize=normalize
|
| 158 |
+
)
|
hyperparams.yaml
CHANGED
|
@@ -2,8 +2,13 @@
|
|
| 2 |
# Model: WAV2VEC base for Emotion Recognition
|
| 3 |
# ############################################################################
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
# Feature parameters
|
| 6 |
-
sample_rate: 16000
|
| 7 |
wav2vec2_hub: facebook/wav2vec2-base
|
| 8 |
|
| 9 |
# Pretrain folder (HuggingFace)
|
|
|
|
| 2 |
# Model: WAV2VEC base for Emotion Recognition
|
| 3 |
# ############################################################################
|
| 4 |
|
| 5 |
+
|
| 6 |
+
# Hparams NEEDED
|
| 7 |
+
HPARAMS_NEEDED: ["encoder_dim", "out_n_neurons", "label_encoder", "softmax"]
|
| 8 |
+
# Modules Needed
|
| 9 |
+
MODULES_NEEDED: ["wav2vec2", "avg_pool", "output_mlp"]
|
| 10 |
+
|
| 11 |
# Feature parameters
|
|
|
|
| 12 |
wav2vec2_hub: facebook/wav2vec2-base
|
| 13 |
|
| 14 |
# Pretrain folder (HuggingFace)
|