Commit
·
5025284
1
Parent(s):
74357e5
Upload 3 files
Browse files- README.md +36 -18
- config.json +67 -67
- hyperparams.yaml +52 -99
README.md
CHANGED
|
@@ -1,42 +1,60 @@
|
|
| 1 |
---
|
| 2 |
-
language:
|
| 3 |
-
|
|
|
|
| 4 |
pipeline_tag: automatic-speech-recognition
|
| 5 |
tags:
|
| 6 |
- CTC
|
| 7 |
- pytorch
|
| 8 |
- speechbrain
|
| 9 |
- Transformer
|
| 10 |
-
license:
|
| 11 |
datasets:
|
| 12 |
- commonvoice
|
| 13 |
metrics:
|
| 14 |
- wer
|
| 15 |
- cer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
---
|
| 17 |
|
| 18 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
| 19 |
<br/><br/>
|
| 20 |
|
| 21 |
-
# wav2vec 2.0 with CTC trained on CommonVoice
|
| 22 |
|
| 23 |
This repository provides all the necessary tools to perform automatic speech
|
| 24 |
-
recognition from an end-to-end system pretrained on CommonVoice (
|
| 25 |
SpeechBrain. For a better experience, we encourage you to learn more about
|
| 26 |
-
[SpeechBrain](https://speechbrain.github.io).
|
| 27 |
|
| 28 |
The performance of the model is the following:
|
| 29 |
|
| 30 |
| Release | Test CER | Test WER | GPUs |
|
| 31 |
-
|
| 32 |
-
|
|
| 33 |
|
| 34 |
## Pipeline description
|
| 35 |
|
| 36 |
This ASR system is composed of 2 different but linked blocks:
|
| 37 |
-
- Tokenizer (
|
| 38 |
-
the train transcriptions (train.tsv) of CommonVoice (
|
| 39 |
-
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([wav2vec2-
|
| 40 |
The obtained final acoustic representation is given to the CTC decoder.
|
| 41 |
|
| 42 |
The system is trained with recordings sampled at 16kHz (single channel).
|
|
@@ -53,13 +71,13 @@ pip install speechbrain transformers
|
|
| 53 |
Please notice that we encourage you to read our tutorials and learn more about
|
| 54 |
[SpeechBrain](https://speechbrain.github.io).
|
| 55 |
|
| 56 |
-
### Transcribing your own audio files (in
|
| 57 |
|
| 58 |
```python
|
| 59 |
-
from speechbrain.pretrained import
|
| 60 |
|
| 61 |
-
asr_model =
|
| 62 |
-
asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-
|
| 63 |
|
| 64 |
```
|
| 65 |
### Inference on GPU
|
|
@@ -85,10 +103,10 @@ pip install -e .
|
|
| 85 |
3. Run Training:
|
| 86 |
```bash
|
| 87 |
cd recipes/CommonVoice/ASR/seq2seq
|
| 88 |
-
python train.py hparams/
|
| 89 |
```
|
| 90 |
|
| 91 |
-
You can find our training results (models, logs, etc) [here](https://
|
| 92 |
|
| 93 |
### Limitations
|
| 94 |
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
|
@@ -113,4 +131,4 @@ Please, cite SpeechBrain if you use it for your research or business.
|
|
| 113 |
primaryClass={eess.AS},
|
| 114 |
note={arXiv:2106.04624}
|
| 115 |
}
|
| 116 |
-
```
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- de
|
| 4 |
+
thumbnail: null
|
| 5 |
pipeline_tag: automatic-speech-recognition
|
| 6 |
tags:
|
| 7 |
- CTC
|
| 8 |
- pytorch
|
| 9 |
- speechbrain
|
| 10 |
- Transformer
|
| 11 |
+
license: apache-2.0
|
| 12 |
datasets:
|
| 13 |
- commonvoice
|
| 14 |
metrics:
|
| 15 |
- wer
|
| 16 |
- cer
|
| 17 |
+
model-index:
|
| 18 |
+
- name: asr-wav2vec2-commonvoice-de
|
| 19 |
+
results:
|
| 20 |
+
- task:
|
| 21 |
+
name: Automatic Speech Recognition
|
| 22 |
+
type: automatic-speech-recognition
|
| 23 |
+
dataset:
|
| 24 |
+
name: CommonVoice Corpus 10.0/ (German)
|
| 25 |
+
type: mozilla-foundation/common_voice_10_1
|
| 26 |
+
config: de
|
| 27 |
+
split: test
|
| 28 |
+
args:
|
| 29 |
+
language: de
|
| 30 |
+
metrics:
|
| 31 |
+
- name: Test WER
|
| 32 |
+
type: wer
|
| 33 |
+
value: '9.54'
|
| 34 |
---
|
| 35 |
|
| 36 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
| 37 |
<br/><br/>
|
| 38 |
|
| 39 |
+
# wav2vec 2.0 with CTC trained on CommonVoice German (No LM)
|
| 40 |
|
| 41 |
This repository provides all the necessary tools to perform automatic speech
|
| 42 |
+
recognition from an end-to-end system pretrained on CommonVoice (German Language) within
|
| 43 |
SpeechBrain. For a better experience, we encourage you to learn more about
|
| 44 |
+
[SpeechBrain](https://speechbrain.github.io).
|
| 45 |
|
| 46 |
The performance of the model is the following:
|
| 47 |
|
| 48 |
| Release | Test CER | Test WER | GPUs |
|
| 49 |
+
|:-------------:|:--------------:|:--------------:| :--------:|
|
| 50 |
+
| 16-08-22 | 2.40 | 9.54 | 1xRTXA6000 48GB |
|
| 51 |
|
| 52 |
## Pipeline description
|
| 53 |
|
| 54 |
This ASR system is composed of 2 different but linked blocks:
|
| 55 |
+
- Tokenizer (char) that transforms words into chars and trained with
|
| 56 |
+
the train transcriptions (train.tsv) of CommonVoice (DE).
|
| 57 |
+
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([wav2vec2-large-xlsr-53-german](https://huggingface.co/facebook/wav2vec2-large-xlsr-53-german)) is combined with two DNN layers and finetuned on CommonVoice DE.
|
| 58 |
The obtained final acoustic representation is given to the CTC decoder.
|
| 59 |
|
| 60 |
The system is trained with recordings sampled at 16kHz (single channel).
|
|
|
|
| 71 |
Please notice that we encourage you to read our tutorials and learn more about
|
| 72 |
[SpeechBrain](https://speechbrain.github.io).
|
| 73 |
|
| 74 |
+
### Transcribing your own audio files (in German)
|
| 75 |
|
| 76 |
```python
|
| 77 |
+
from speechbrain.pretrained import EncoderASR
|
| 78 |
|
| 79 |
+
asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-de", savedir="pretrained_models/asr-wav2vec2-commonvoice-de")
|
| 80 |
+
asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-de/example-de.wav")
|
| 81 |
|
| 82 |
```
|
| 83 |
### Inference on GPU
|
|
|
|
| 103 |
3. Run Training:
|
| 104 |
```bash
|
| 105 |
cd recipes/CommonVoice/ASR/seq2seq
|
| 106 |
+
python train.py hparams/train_de_with_wav2vec.yaml --data_folder=your_data_folder
|
| 107 |
```
|
| 108 |
|
| 109 |
+
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/19G2Zm8896QSVDqVfs7PS_W86-K0-5xeC?usp=sharing).
|
| 110 |
|
| 111 |
### Limitations
|
| 112 |
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
|
|
|
| 131 |
primaryClass={eess.AS},
|
| 132 |
note={arXiv:2106.04624}
|
| 133 |
}
|
| 134 |
+
```
|
config.json
CHANGED
|
@@ -1,69 +1,69 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"speechbrain_interface": "EncoderASR",
|
| 3 |
+
"activation_dropout": 0.1,
|
| 4 |
+
"apply_spec_augment": true,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"Wav2Vec2Model"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.1,
|
| 9 |
+
"bos_token_id": 1,
|
| 10 |
+
"conv_bias": true,
|
| 11 |
+
"conv_dim": [
|
| 12 |
+
512,
|
| 13 |
+
512,
|
| 14 |
+
512,
|
| 15 |
+
512,
|
| 16 |
+
512,
|
| 17 |
+
512,
|
| 18 |
+
512
|
| 19 |
+
],
|
| 20 |
+
"conv_kernel": [
|
| 21 |
+
10,
|
| 22 |
+
3,
|
| 23 |
+
3,
|
| 24 |
+
3,
|
| 25 |
+
3,
|
| 26 |
+
2,
|
| 27 |
+
2
|
| 28 |
+
],
|
| 29 |
+
"conv_stride": [
|
| 30 |
+
5,
|
| 31 |
+
2,
|
| 32 |
+
2,
|
| 33 |
+
2,
|
| 34 |
+
2,
|
| 35 |
+
2,
|
| 36 |
+
2
|
| 37 |
+
],
|
| 38 |
+
"ctc_loss_reduction": "sum",
|
| 39 |
+
"ctc_zero_infinity": false,
|
| 40 |
+
"do_stable_layer_norm": true,
|
| 41 |
+
"eos_token_id": 2,
|
| 42 |
+
"feat_extract_activation": "gelu",
|
| 43 |
+
"feat_extract_dropout": 0.0,
|
| 44 |
+
"feat_extract_norm": "layer",
|
| 45 |
+
"feat_proj_dropout": 0.1,
|
| 46 |
+
"final_dropout": 0.1,
|
| 47 |
+
"gradient_checkpointing": false,
|
| 48 |
+
"hidden_act": "gelu",
|
| 49 |
+
"hidden_dropout": 0.1,
|
| 50 |
+
"hidden_dropout_prob": 0.1,
|
| 51 |
+
"hidden_size": 1024,
|
| 52 |
+
"initializer_range": 0.02,
|
| 53 |
+
"intermediate_size": 4096,
|
| 54 |
+
"layer_norm_eps": 1e-05,
|
| 55 |
+
"layerdrop": 0.1,
|
| 56 |
+
"mask_feature_length": 10,
|
| 57 |
+
"mask_feature_prob": 0.0,
|
| 58 |
+
"mask_time_length": 10,
|
| 59 |
+
"mask_time_prob": 0.05,
|
| 60 |
+
"model_type": "wav2vec2",
|
| 61 |
+
"num_attention_heads": 16,
|
| 62 |
+
"num_conv_pos_embedding_groups": 16,
|
| 63 |
+
"num_conv_pos_embeddings": 128,
|
| 64 |
+
"num_feat_extract_layers": 7,
|
| 65 |
+
"num_hidden_layers": 24,
|
| 66 |
+
"pad_token_id": 0,
|
| 67 |
+
"transformers_version": "4.21.1",
|
| 68 |
+
"vocab_size": 32
|
| 69 |
}
|
hyperparams.yaml
CHANGED
|
@@ -1,138 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# ################################
|
| 2 |
-
# Model: wav2vec2 + DNN + CTC
|
| 3 |
# Augmentation: SpecAugment
|
| 4 |
-
# Authors:
|
| 5 |
# ################################
|
| 6 |
|
| 7 |
-
sample_rate: 16000
|
| 8 |
-
wav2vec2_hub: facebook/wav2vec2-large-lv60
|
| 9 |
-
|
| 10 |
# BPE parameters
|
| 11 |
-
token_type:
|
| 12 |
character_coverage: 1.0
|
| 13 |
|
| 14 |
# Model parameters
|
| 15 |
-
activation: !name:torch.nn.LeakyReLU
|
| 16 |
-
dnn_layers: 2
|
| 17 |
dnn_neurons: 1024
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Outputs
|
| 22 |
-
output_neurons:
|
| 23 |
|
| 24 |
# Decoding parameters
|
| 25 |
# Be sure that the bos and eos index match with the BPEs ones
|
| 26 |
blank_index: 0
|
| 27 |
bos_index: 1
|
| 28 |
eos_index: 2
|
| 29 |
-
min_decode_ratio: 0.0
|
| 30 |
-
max_decode_ratio: 1.0
|
| 31 |
-
beam_size: 10
|
| 32 |
-
eos_threshold: 1.5
|
| 33 |
-
using_max_attn_shift: True
|
| 34 |
-
max_attn_shift: 140
|
| 35 |
-
ctc_weight_decode: 0.0
|
| 36 |
-
temperature: 1.50
|
| 37 |
-
|
| 38 |
-
# enc: !new:speechbrain.lobes.models.VanillaNN.VanillaNN
|
| 39 |
-
# input_shape: [null, null, 1024]
|
| 40 |
-
# activation: !ref <activation>
|
| 41 |
-
# dnn_blocks: !ref <dnn_layers>
|
| 42 |
-
# dnn_neurons: !ref <dnn_neurons>
|
| 43 |
|
| 44 |
enc: !new:speechbrain.nnet.containers.Sequential
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
|
| 64 |
wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
emb: !new:speechbrain.nnet.embedding.Embedding
|
| 71 |
-
num_embeddings: !ref <output_neurons>
|
| 72 |
-
embedding_dim: !ref <emb_size>
|
| 73 |
-
|
| 74 |
-
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
|
| 75 |
-
enc_dim: !ref <dnn_neurons>
|
| 76 |
-
input_size: !ref <emb_size>
|
| 77 |
-
rnn_type: gru
|
| 78 |
-
attn_type: location
|
| 79 |
-
hidden_size: 1024
|
| 80 |
-
attn_dim: 1024
|
| 81 |
-
num_layers: 1
|
| 82 |
-
scaling: 1.0
|
| 83 |
-
channels: 10
|
| 84 |
-
kernel_size: 100
|
| 85 |
-
re_init: True
|
| 86 |
-
dropout: 0.0
|
| 87 |
|
| 88 |
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
seq_lin: !new:speechbrain.nnet.linear.Linear
|
| 93 |
-
input_size: !ref <dec_neurons>
|
| 94 |
-
n_neurons: !ref <output_neurons>
|
| 95 |
|
| 96 |
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
| 97 |
-
|
| 98 |
|
| 99 |
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
seq_cost: !name:speechbrain.nnet.losses.nll_loss
|
| 103 |
-
label_smoothing: 0.1
|
| 104 |
|
| 105 |
asr_model: !new:torch.nn.ModuleList
|
| 106 |
-
- [!ref <enc>, !ref <
|
| 107 |
|
| 108 |
tokenizer: !new:sentencepiece.SentencePieceProcessor
|
| 109 |
|
| 110 |
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
|
| 111 |
wav2vec2: !ref <wav2vec2>
|
| 112 |
enc: !ref <enc>
|
| 113 |
-
|
| 114 |
-
decoder: !new:speechbrain.decoders.S2SRNNBeamSearcher
|
| 115 |
-
embedding: !ref <emb>
|
| 116 |
-
decoder: !ref <dec>
|
| 117 |
-
linear: !ref <seq_lin>
|
| 118 |
-
ctc_linear: !ref <ctc_lin>
|
| 119 |
-
bos_index: !ref <bos_index>
|
| 120 |
-
eos_index: !ref <eos_index>
|
| 121 |
-
blank_index: !ref <blank_index>
|
| 122 |
-
min_decode_ratio: !ref <min_decode_ratio>
|
| 123 |
-
max_decode_ratio: !ref <max_decode_ratio>
|
| 124 |
-
beam_size: !ref <beam_size>
|
| 125 |
-
eos_threshold: !ref <eos_threshold>
|
| 126 |
-
using_max_attn_shift: !ref <using_max_attn_shift>
|
| 127 |
-
max_attn_shift: !ref <max_attn_shift>
|
| 128 |
-
temperature: !ref <temperature>
|
| 129 |
|
| 130 |
modules:
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
| 133 |
|
| 134 |
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
| 1 |
+
# Generated 2022-08-12 from:
|
| 2 |
+
# /netscratch/sagar/thesis/speechbrain/recipes/CommonVoice_de/ASR/CTC/hparams/train_with_wav2vec.yaml
|
| 3 |
+
# yamllint disable
|
| 4 |
# ################################
|
| 5 |
+
# Model: wav2vec2 + DNN + CTC
|
| 6 |
# Augmentation: SpecAugment
|
| 7 |
+
# Authors: Sung-Lin Yeh 2021
|
| 8 |
# ################################
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
# BPE parameters
|
| 11 |
+
token_type: char # ["unigram", "bpe", "char"]
|
| 12 |
character_coverage: 1.0
|
| 13 |
|
| 14 |
# Model parameters
|
| 15 |
+
# activation: !name:torch.nn.LeakyReLU
|
|
|
|
| 16 |
dnn_neurons: 1024
|
| 17 |
+
wav2vec_output_dim: 1024
|
| 18 |
+
dropout: 0.15
|
| 19 |
+
|
| 20 |
+
sample_rate: 16000
|
| 21 |
+
|
| 22 |
+
wav2vec2_hub: facebook/wav2vec2-large-xlsr-53-german
|
| 23 |
|
| 24 |
# Outputs
|
| 25 |
+
output_neurons: 32 # BPE size, index(blank/eos/bos) = 0
|
| 26 |
|
| 27 |
# Decoding parameters
|
| 28 |
# Be sure that the bos and eos index match with the BPEs ones
|
| 29 |
blank_index: 0
|
| 30 |
bos_index: 1
|
| 31 |
eos_index: 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
enc: !new:speechbrain.nnet.containers.Sequential
|
| 34 |
+
input_shape: [null, null, !ref <wav2vec_output_dim>]
|
| 35 |
+
linear1: !name:speechbrain.nnet.linear.Linear
|
| 36 |
+
n_neurons: !ref <dnn_neurons>
|
| 37 |
+
bias: True
|
| 38 |
+
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
|
| 39 |
+
activation: !new:torch.nn.LeakyReLU
|
| 40 |
+
drop: !new:torch.nn.Dropout
|
| 41 |
+
p: !ref <dropout>
|
| 42 |
+
linear2: !name:speechbrain.nnet.linear.Linear
|
| 43 |
+
n_neurons: !ref <dnn_neurons>
|
| 44 |
+
bias: True
|
| 45 |
+
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
|
| 46 |
+
activation2: !new:torch.nn.LeakyReLU
|
| 47 |
+
drop2: !new:torch.nn.Dropout
|
| 48 |
+
p: !ref <dropout>
|
| 49 |
+
linear3: !name:speechbrain.nnet.linear.Linear
|
| 50 |
+
n_neurons: !ref <dnn_neurons>
|
| 51 |
+
bias: True
|
| 52 |
+
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
|
| 53 |
+
activation3: !new:torch.nn.LeakyReLU
|
| 54 |
|
| 55 |
wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
| 56 |
+
source: !ref <wav2vec2_hub>
|
| 57 |
+
output_norm: True
|
| 58 |
+
freeze: True
|
| 59 |
+
save_path: wav2vec2_checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
| 62 |
+
input_size: !ref <dnn_neurons>
|
| 63 |
+
n_neurons: !ref <output_neurons>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
| 66 |
+
apply_log: True
|
| 67 |
|
| 68 |
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
| 69 |
+
blank_index: !ref <blank_index>
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
asr_model: !new:torch.nn.ModuleList
|
| 72 |
+
- [!ref <enc>, !ref <ctc_lin>]
|
| 73 |
|
| 74 |
tokenizer: !new:sentencepiece.SentencePieceProcessor
|
| 75 |
|
| 76 |
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
|
| 77 |
wav2vec2: !ref <wav2vec2>
|
| 78 |
enc: !ref <enc>
|
| 79 |
+
ctc_lin: !ref <ctc_lin>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
modules:
|
| 82 |
+
encoder: !ref <encoder>
|
| 83 |
+
|
| 84 |
+
decoding_function: !name:speechbrain.decoders.ctc_greedy_decode
|
| 85 |
+
blank_id: !ref <blank_index>
|
| 86 |
|
| 87 |
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
| 88 |
+
loadables:
|
| 89 |
+
wav2vec2: !ref <wav2vec2>
|
| 90 |
+
asr: !ref <asr_model>
|
| 91 |
+
tokenizer: !ref <tokenizer>
|