File size: 7,848 Bytes
7b83e1b d9497c9 8e44ee3 d9497c9 368632e d9497c9 ac6c021 8e0b4c4 ac6c021 9310681 ac6c021 2b66767 ac6c021 9310681 ac6c021 49c72c6 ac6c021 49c72c6 ac6c021 c5063b0 435cf60 c5063b0 435cf60 ac6c021 435cf60 ae3d580 71449d3 ae3d580 71449d3 ae3d580 ac6c021 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
language:
- en
thumbnail: null
tags:
- automatic-speech-recognition
- Transducer
- Conformer
- pytorch
- speechbrain
license: apache-2.0
datasets:
- librispeech_asr
metrics:
- wer
model-index:
- name: Conformer-Transducer by SpeechBrain
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER (non-streaming greedy)
type: wer
value: 2.72
- name: Test WER (960ms chunk size, 4 left context chunks)
type: wer
value: 3.13
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER (non-streaming greedy)
type: wer
value: 6.47
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# Conformer for LibriSpeech
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on LibriSpeech (EN) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).
The performance of the model in full context mode (no streaming) is the following:
| Release | Test clean WER | Test other WER | GPUs |
|:-------------:|:--------------:|:--------------:|:--------:|
| 24-02-26 | 2.72 | 3.13 | 4xA100 40GB |
With streaming, the results with different chunk sizes on test-clean are the following:
| | full | cs=32 (1280ms) | 24 (960ms) | 16 (640ms) | 12 (480ms) | 8 (320ms) |
|:-----:|:----:|:-----:|:-----:|:-----:|:-----:|:-----:|
| full | 2.72%| - | - | - | - | - |
| lc=32 | - | 3.09% | 3.07% | 3.26% | 3.31% | 3.44% |
| 16 | - | 3.10% | 3.07% | 3.27% | 3.32% | 3.50% |
| 8 | - | 3.10% | 3.11% | 3.31% | 3.39% | 3.62% |
| 4 | - | 3.12% | 3.13% | 3.37% | 3.51% | 3.80% |
| 2 | - | 3.19% | 3.24% | 3.50% | 3.79% | 4.38% |
## Pipeline description
This ASR system is a Conformer model trained with the RNN-T loss (with an auxiliary CTC loss to stabilize training). The model operates with a unigram tokenizer.
Architecture details are described in the [training hyperparameters file](https://github.com/speechbrain/speechbrain/blob/develop/recipes/LibriSpeech/ASR/transducer/hparams/conformer_transducer.yaml).
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling `transcribe_file` if needed.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Transcribing your own audio files (in English)
```python
from speechbrain.inference.ASR import StreamingASR
from speechbrain.utils.dynamic_chunk_training import DynChunkTrainConfig
asr_model = StreamingASR.from_hparams(
source="speechbrain/asr-streaming-conformer-librispeech",
savedir="pretrained_models/asr-streaming-conformer-librispeech"
)
asr_model.transcribe_file(
"speechbrain/asr-streaming-conformer-librispeech/test-en.wav",
# select a chunk size of ~960ms with 4 chunks of left context
DynChunkTrainConfig(24, 4),
# disable torchaudio streaming to allow fetching from HuggingFace
# set this to True for your own files or streams to allow for streaming file decoding
use_torchaudio_streaming=False,
)
```
<details>
<summary>Commandline tool to transcribe a file or a live stream</summary>
**Decoding from a live stream using ffmpeg (BBC Radio 4):**
`python3 asr.py http://as-hls-ww-live.akamaized.net/pool_904/live/ww/bbc_radio_fourfm/bbc_radio_fourfm.isml/bbc_radio_fourfm-audio%3d96000.norewind.m3u8 --model-source=sdelangen/speechbrain-asr-conformer-test --device=cpu -v`
**Decoding from a file:**
`python3 asr.py some-english-speech.wav --model-source=sdelangen/speechbrain-asr-conformer-test --device=cpu -v`
```python
from argparse import ArgumentParser
import logging
parser = ArgumentParser()
parser.add_argument("audio_path")
parser.add_argument("--model-source", required=True)
parser.add_argument("--device", default="cpu")
parser.add_argument("--ip", default="127.0.0.1")
parser.add_argument("--port", default=9431)
parser.add_argument("--chunk-size", default=24, type=int)
parser.add_argument("--left-context-chunks", default=4, type=int)
parser.add_argument("--num-threads", default=None, type=int)
parser.add_argument("--verbose", "-v", default=False, action="store_true")
args = parser.parse_args()
if args.verbose:
logging.getLogger().setLevel(logging.INFO)
logging.info("Loading libraries")
from speechbrain.inference.ASR import StreamingASR
from speechbrain.utils.dynamic_chunk_training import DynChunkTrainConfig
import torch
device = args.device
if args.num_threads is not None:
torch.set_num_threads(args.num_threads)
logging.info(f"Loading model from \"{args.model_source}\" onto device {device}")
asr = StreamingASR.from_hparams(args.model_source, run_opts={"device": device})
config = DynChunkTrainConfig(args.chunk_size, args.left_context_chunks)
logging.info(f"Starting stream from URI \"{args.audio_path}\"")
for text_chunk in asr.transcribe_file_streaming(args.audio_path, config):
print(text_chunk, flush=True, end="")
```
</details>
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
## Parallel Inference on a Batch
TODO
Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.
### Training
TODO
The model was trained with SpeechBrain (Commit hash: 'f73fcc35').
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```bash
cd recipes/LibriSpeech/ASR/transformer
python train.py hparams/conformer_large.yaml --data_folder=your_data_folder
```
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
|