Andreas Nautsch
commited on
Commit
·
e25584b
1
Parent(s):
30255f3
Upload hyperparams.yaml
Browse files- hyperparams.yaml +120 -0
hyperparams.yaml
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ################################
|
| 2 |
+
# Model: VGG2 + LSTM + time pooling
|
| 3 |
+
# Augmentation: SpecAugment
|
| 4 |
+
# Authors: Titouan Parcollet, Mirco Ravanelli, Peter Plantinga, Ju-Chieh Chou,
|
| 5 |
+
# and Abdel HEBA 2020
|
| 6 |
+
# ################################
|
| 7 |
+
# Feature parameters (FBANKS etc)
|
| 8 |
+
sample_rate: 16000
|
| 9 |
+
n_fft: 400
|
| 10 |
+
n_mels: 80
|
| 11 |
+
# Model parameters
|
| 12 |
+
activation: !name:torch.nn.LeakyReLU
|
| 13 |
+
dropout: 0.15
|
| 14 |
+
cnn_blocks: 3
|
| 15 |
+
cnn_channels: (128, 200, 256)
|
| 16 |
+
inter_layer_pooling_size: (2, 2, 2)
|
| 17 |
+
cnn_kernelsize: (3, 3)
|
| 18 |
+
time_pooling_size: 4
|
| 19 |
+
rnn_class: !name:speechbrain.nnet.RNN.LSTM
|
| 20 |
+
rnn_layers: 5
|
| 21 |
+
rnn_neurons: 1024
|
| 22 |
+
rnn_bidirectional: True
|
| 23 |
+
dnn_blocks: 2
|
| 24 |
+
dnn_neurons: 1024
|
| 25 |
+
emb_size: 128
|
| 26 |
+
dec_neurons: 1024
|
| 27 |
+
# Outputs
|
| 28 |
+
output_neurons: 500 # BPE size, index(blank/eos/bos) = 0
|
| 29 |
+
# Decoding parameters
|
| 30 |
+
# Be sure that the bos and eos index match with the BPEs ones
|
| 31 |
+
blank_index: 0
|
| 32 |
+
bos_index: 0
|
| 33 |
+
eos_index: 0
|
| 34 |
+
min_decode_ratio: 0.0
|
| 35 |
+
max_decode_ratio: 1.0
|
| 36 |
+
beam_size: 80
|
| 37 |
+
eos_threshold: 1.5
|
| 38 |
+
using_max_attn_shift: True
|
| 39 |
+
max_attn_shift: 140
|
| 40 |
+
ctc_weight_decode: 0.0
|
| 41 |
+
temperature: 1.50
|
| 42 |
+
normalizer: !new:speechbrain.processing.features.InputNormalization
|
| 43 |
+
norm_type: global
|
| 44 |
+
compute_features: !new:speechbrain.lobes.features.Fbank
|
| 45 |
+
sample_rate: !ref <sample_rate>
|
| 46 |
+
n_fft: !ref <n_fft>
|
| 47 |
+
n_mels: !ref <n_mels>
|
| 48 |
+
enc: !new:speechbrain.lobes.models.CRDNN.CRDNN
|
| 49 |
+
input_shape: [null, null, !ref <n_mels>]
|
| 50 |
+
activation: !ref <activation>
|
| 51 |
+
dropout: !ref <dropout>
|
| 52 |
+
cnn_blocks: !ref <cnn_blocks>
|
| 53 |
+
cnn_channels: !ref <cnn_channels>
|
| 54 |
+
cnn_kernelsize: !ref <cnn_kernelsize>
|
| 55 |
+
inter_layer_pooling_size: !ref <inter_layer_pooling_size>
|
| 56 |
+
time_pooling: True
|
| 57 |
+
using_2d_pooling: False
|
| 58 |
+
time_pooling_size: !ref <time_pooling_size>
|
| 59 |
+
rnn_class: !ref <rnn_class>
|
| 60 |
+
rnn_layers: !ref <rnn_layers>
|
| 61 |
+
rnn_neurons: !ref <rnn_neurons>
|
| 62 |
+
rnn_bidirectional: !ref <rnn_bidirectional>
|
| 63 |
+
rnn_re_init: True
|
| 64 |
+
dnn_blocks: !ref <dnn_blocks>
|
| 65 |
+
dnn_neurons: !ref <dnn_neurons>
|
| 66 |
+
emb: !new:speechbrain.nnet.embedding.Embedding
|
| 67 |
+
num_embeddings: !ref <output_neurons>
|
| 68 |
+
embedding_dim: !ref <emb_size>
|
| 69 |
+
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
|
| 70 |
+
enc_dim: !ref <dnn_neurons>
|
| 71 |
+
input_size: !ref <emb_size>
|
| 72 |
+
rnn_type: gru
|
| 73 |
+
attn_type: location
|
| 74 |
+
hidden_size: 1024
|
| 75 |
+
attn_dim: 1024
|
| 76 |
+
num_layers: 1
|
| 77 |
+
scaling: 1.0
|
| 78 |
+
channels: 10
|
| 79 |
+
kernel_size: 100
|
| 80 |
+
re_init: True
|
| 81 |
+
dropout: !ref <dropout>
|
| 82 |
+
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
| 83 |
+
input_size: !ref <dnn_neurons>
|
| 84 |
+
n_neurons: !ref <output_neurons>
|
| 85 |
+
seq_lin: !new:speechbrain.nnet.linear.Linear
|
| 86 |
+
input_size: !ref <dec_neurons>
|
| 87 |
+
n_neurons: !ref <output_neurons>
|
| 88 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
| 89 |
+
apply_log: True
|
| 90 |
+
asr_model: !new:torch.nn.ModuleList
|
| 91 |
+
- [!ref <enc>, !ref <emb>, !ref <dec>, !ref <ctc_lin>, !ref <seq_lin>]
|
| 92 |
+
tokenizer: !new:sentencepiece.SentencePieceProcessor
|
| 93 |
+
# We compose the inference (encoder) pipeline.
|
| 94 |
+
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
|
| 95 |
+
input_shape: [null, null, !ref <n_mels>]
|
| 96 |
+
compute_features: !ref <compute_features>
|
| 97 |
+
normalize: !ref <normalizer>
|
| 98 |
+
model: !ref <enc>
|
| 99 |
+
decoder: !new:speechbrain.decoders.S2SRNNBeamSearcher
|
| 100 |
+
embedding: !ref <emb>
|
| 101 |
+
decoder: !ref <dec>
|
| 102 |
+
linear: !ref <seq_lin>
|
| 103 |
+
bos_index: !ref <bos_index>
|
| 104 |
+
eos_index: !ref <eos_index>
|
| 105 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
| 106 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
| 107 |
+
beam_size: !ref <beam_size>
|
| 108 |
+
eos_threshold: !ref <eos_threshold>
|
| 109 |
+
using_max_attn_shift: !ref <using_max_attn_shift>
|
| 110 |
+
max_attn_shift: !ref <max_attn_shift>
|
| 111 |
+
temperature: !ref <temperature>
|
| 112 |
+
modules:
|
| 113 |
+
normalizer: !ref <normalizer>
|
| 114 |
+
encoder: !ref <encoder>
|
| 115 |
+
decoder: !ref <decoder>
|
| 116 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
| 117 |
+
loadables:
|
| 118 |
+
normalizer: !ref <normalizer>
|
| 119 |
+
asr: !ref <asr_model>
|
| 120 |
+
tokenizer: !ref <tokenizer>
|