Minsoo Kang commited on
Commit
7221cb9
·
1 Parent(s): dd1db9d

initial commit

Browse files
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{%- if tools is iterable and tools | length > 0 %}\n {{- '<|im_start|><|system|>'}}\n {{- '\ub2f9\uc2e0\uc740 \ub3c4\uad6c \ud638\ucd9c \uae30\ub2a5\uc744 \uac16\ucd98 \uc720\uc6a9\ud55c \ub3c4\uc6b0\ubbf8\uc785\ub2c8\ub2e4. \uc0ac\uc6a9\uc790\uc758 \uc694\uccad\uc744 \ucc98\ub9ac\ud558\uae30 \uc704\ud574\uc11c \ud544\uc694\ud55c \ub3c4\uad6c\uac00 \uc8fc\uc5b4\uc9c4 \ubaa9\ub85d\uc5d0 \uc788\ub294 \uacbd\uc6b0 \ub3c4\uad6c \ud638\ucd9c\ub85c \uc751\ub2f5\ud558\uc138\uc694.\n\ud544\uc694\ud55c \ub3c4\uad6c\uac00 \ubaa9\ub85d\uc5d0 \uc5c6\ub294 \uacbd\uc6b0\uc5d0\ub294 \ub3c4\uad6c \ud638\ucd9c \uc5c6\uc774 \uc0ac\uc6a9\uc790\uac00 \uc694\uad6c\ud55c \uc815\ubcf4\ub97c \uc81c\uacf5\ud558\uc138\uc694.\n\ud544\uc694\ud55c \ub3c4\uad6c\uac00 \ubaa9\ub85d\uc5d0 \uc788\uc9c0\ub9cc \ud574\ub2f9 \ub3c4\uad6c\ub97c \ud638\ucd9c\ud558\ub294\ub370 \ud544\uc694\ud55c argument \uc815\ubcf4\uac00 \ubd80\uc871\ud55c \uacbd\uc6b0 \ud574\ub2f9 \uc815\ubcf4\ub97c \uc0ac\uc6a9\uc790\uc5d0\uac8c \uc694\uccad\ud558\uc138\uc694.\n\uc0ac\uc6a9\uc790\uc758 \uc694\uccad\uc744 \ucc98\ub9ac\ud558\uae30 \uc704\ud574 \uc5ec\ub7ec\ubc88 \ub3c4\uad6c\ub97c \ud638\ucd9c\ud560 \uc218 \uc788\uc5b4\uc57c \ud569\ub2c8\ub2e4.\n\ub3c4\uad6c \ud638\ucd9c \uc774\ud6c4 \ub3c4\uad6c \uc2e4\ud589 \uacb0\uacfc\ub97c \uc785\ub825\uc73c\ub85c \ubc1b\uc73c\uba74 \ud574\ub2f9 \uacb0\uacfc\ub97c \ud65c\uc6a9\ud558\uc5ec \ub2f5\ubcc0\uc744 \uc0dd\uc131\ud558\uc138\uc694.\n\n\ub2e4\uc74c\uc740 \uc811\uadfc\ud560 \uc218 \uc788\ub294 \ub3c4\uad6c\ub4e4\uc758 \ubaa9\ub85d \uc785\ub2c8\ub2e4:\n<tools>\n'}}\n {%- for t in tools %}\n {{- t | tojson }}\n {{- '\n' }}\n {%- endfor %}\n {{- '</tools>' }}\n {{- '\n\n\ub3c4\uad6c\ub97c \ud638\ucd9c\ud558\ub824\uba74 \uc544\ub798\uc758 JSON\uc73c\ub85c \uc751\ub2f5\ud558\uc138\uc694.\n\ub3c4\uad6c \ud638\ucd9c \ud615\uc2dd: <tool_call>{\"name\": \ub3c4\uad6c \uc774\ub984, \"arguments\": dictionary \ud615\ud0dc\uc758 \ub3c4\uad6c \uc778\uc790\uac12}</tool_call>' }}\n \n {%- if messages[0].role == 'system' %}\n {{- '\n\n' + messages[0].content}}\n {% set dummy = messages.pop(0) %}\n {%- endif %} \n {{- '<|im_end|>' }}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if loop.first and message.role != 'system' %}\n {{- '<|im_start|><|system|>\ub2f9\uc2e0\uc740 \uc720\uc6a9\ud55c \uc5b8\uc5b4 \ubc0f \uc2dc\uac01 \ub3c4\uc6b0\ubbf8\uc785\ub2c8\ub2e4. \uc0ac\uc6a9\uc790\uac00 \uc81c\uacf5\ud558\ub294 \uc2dc\uac01\uc801 \ucf58\ud150\uce20\ub97c \uc774\ud574\ud560 \uc218 \uc788\uc73c\uba70, \uc790\uc5f0\uc5b4\ub97c \uc0ac\uc6a9\ud558\uc5ec \uc0ac\uc6a9\uc790\uc5d0\uac8c \ub2e4\uc591\ud55c \uc791\uc5c5\uc744 \uc9c0\uc6d0\ud569\ub2c8\ub2e4.<|im_end|>' }}\n {%- endif %}\n\n {%- if message.role == 'system' %}\n {{- '<|im_start|><|system|>' + message.content + '<|im_end|>'}}\n {%- elif message.role == 'user' %}\n {%- if message.content is string %}\n {{- '<|im_start|><|user|>' + message.content + '<|im_end|>'}}\n {%- else %}\n {{- '<|im_start|><|user|>' }}\n {%- for content in message.content %}\n {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}\n {{- '<|extra_id_11|>' }}\n {%- elif 'text' in content %}\n {{- content.text }}\n {%- endif %}\n {%- endfor %}\n {{- '<|im_end|>' }}\n {%- endif %}\n {%- elif message.role == 'assistant' %}\n {{- '<|im_start|><|assistant|>'}}\n {%- if message.content is defined %}\n {%- if message.content is string %}\n {{- message.content }}\n {%- else %}\n {%- for content in message.content %}\n {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}\n {{- '<image>' }}\n {%- elif 'text' in content %}\n {{- content.text }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {%- endif %}\n {%- if message.tool_calls is defined %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>' }}\n {{- '{' }}\n {{- '\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\"' }}\n {%- if tool_call.arguments is defined %}\n {{- ', ' }}\n {{- '\"arguments\": ' }}\n {{- tool_call.arguments|tojson }}\n {%- endif %}\n {{- '}' }}\n {{- '</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>'}}\n\n {%- elif message.role == 'tool' %}\n {{- '<|im_start|><|extra_id_13|><tool_output>' + message.content + '</tool_output><|im_end|>'}}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|><|assistant|>'}}\n{%- endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "AX4VLForConditionalGeneration"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_ax4vl.AX4VLConfig",
7
+ "AutoModelForCausalLM": "modeling_ax4vl.AX4VLForConditionalGeneration",
8
+ "AutoProcessor": "processing_ax4vl.AX4VLProcessor"
9
+ },
10
+ "downsample_ratio": 0.5,
11
+ "dynamic_image_size": true,
12
+ "force_image_size": 384,
13
+ "image_token_index": 22,
14
+ "llm_config": {
15
+ "_attn_implementation_autoset": false,
16
+ "add_cross_attention": false,
17
+ "architectures": [
18
+ "Qwen2ForCausalLM"
19
+ ],
20
+ "attention_dropout": 0.0,
21
+ "attn_implementation": "flash_attention_2",
22
+ "bad_words_ids": null,
23
+ "begin_suppress_tokens": null,
24
+ "bos_token_id": 0,
25
+ "chunk_size_feed_forward": 0,
26
+ "cross_attention_hidden_size": null,
27
+ "decoder_start_token_id": null,
28
+ "diversity_penalty": 0.0,
29
+ "do_sample": false,
30
+ "early_stopping": false,
31
+ "encoder_no_repeat_ngram_size": 0,
32
+ "eos_token_id": 0,
33
+ "exponential_decay_length_penalty": null,
34
+ "finetuning_task": null,
35
+ "forced_bos_token_id": null,
36
+ "forced_eos_token_id": null,
37
+ "hidden_act": "silu",
38
+ "hidden_size": 3584,
39
+ "id2label": {
40
+ "0": "LABEL_0",
41
+ "1": "LABEL_1"
42
+ },
43
+ "initializer_range": 0.02,
44
+ "intermediate_size": 18944,
45
+ "is_decoder": false,
46
+ "is_encoder_decoder": false,
47
+ "label2id": {
48
+ "LABEL_0": 0,
49
+ "LABEL_1": 1
50
+ },
51
+ "length_penalty": 1.0,
52
+ "max_length": 20,
53
+ "max_position_embeddings": 16384,
54
+ "max_window_layers": 28,
55
+ "min_length": 0,
56
+ "model_type": "qwen2",
57
+ "no_repeat_ngram_size": 0,
58
+ "num_attention_heads": 28,
59
+ "num_beam_groups": 1,
60
+ "num_beams": 1,
61
+ "num_hidden_layers": 28,
62
+ "num_key_value_heads": 4,
63
+ "num_return_sequences": 1,
64
+ "output_attentions": false,
65
+ "output_hidden_states": false,
66
+ "output_scores": false,
67
+ "pad_token_id": 1,
68
+ "prefix": null,
69
+ "problem_type": null,
70
+ "pruned_heads": {},
71
+ "remove_invalid_values": false,
72
+ "repetition_penalty": 1.0,
73
+ "return_dict": true,
74
+ "return_dict_in_generate": false,
75
+ "rms_norm_eps": 1e-05,
76
+ "rope_scaling": null,
77
+ "rope_theta": 1000000,
78
+ "sep_token_id": null,
79
+ "sliding_window": null,
80
+ "suppress_tokens": null,
81
+ "task_specific_params": null,
82
+ "temperature": 1.0,
83
+ "tf_legacy_loss": false,
84
+ "tie_encoder_decoder": false,
85
+ "tie_word_embeddings": false,
86
+ "tokenizer_class": null,
87
+ "top_k": 50,
88
+ "top_p": 1.0,
89
+ "torch_dtype": "bfloat16",
90
+ "torchscript": false,
91
+ "typical_p": 1.0,
92
+ "use_bfloat16": false,
93
+ "use_cache": false,
94
+ "use_sliding_window": false,
95
+ "vocab_size": 102400
96
+ },
97
+ "max_dynamic_patch": 12,
98
+ "max_num_tiles": 12,
99
+ "min_dynamic_patch": 1,
100
+ "min_num_tiles": 1,
101
+ "model_type": "a.x-4-vl",
102
+ "pad_token_id": 1,
103
+ "projector_config": {
104
+ "grid_size": 12,
105
+ "in_hidden_size": 1152,
106
+ "model_type": "ldpnetv2_projector",
107
+ "out_hidden_size": 3584,
108
+ "torch_dtype": "bfloat16"
109
+ },
110
+ "ps_version": "v2",
111
+ "select_layer": -1,
112
+ "template": "axvlm",
113
+ "text_config": {
114
+ "architectures": [
115
+ "Qwen2ForCausalLM"
116
+ ],
117
+ "attn_implementation": "flash_attention_2",
118
+ "bos_token_id": 0,
119
+ "eos_token_id": 0,
120
+ "hidden_size": 3584,
121
+ "intermediate_size": 18944,
122
+ "max_position_embeddings": 16384,
123
+ "model_type": "qwen2",
124
+ "num_attention_heads": 28,
125
+ "num_hidden_layers": 28,
126
+ "num_key_value_heads": 4,
127
+ "pad_token_id": 1,
128
+ "rms_norm_eps": 1e-05,
129
+ "rope_theta": 1000000,
130
+ "sliding_window": null,
131
+ "torch_dtype": "bfloat16",
132
+ "use_cache": false,
133
+ "vocab_size": 102400
134
+ },
135
+ "tie_word_embeddings": false,
136
+ "torch_dtype": "bfloat16",
137
+ "transformers_version": "4.49.0",
138
+ "use_thumbnail": true,
139
+ "vision_config": {
140
+ "drop_path_rate": 0.0,
141
+ "hidden_size": 1152,
142
+ "image_size": 384,
143
+ "intermediate_size": 4304,
144
+ "model_type": "siglip_vision_model",
145
+ "num_attention_heads": 16,
146
+ "num_hidden_layers": 27,
147
+ "torch_dtype": "bfloat16",
148
+ "vision_use_head": false
149
+ },
150
+ "vision_feature_layer": 0,
151
+ "vision_feature_select_strategy": "full"
152
+ }
configuration_ax4vl.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import transformers
2
+ from transformers.utils import logging
3
+ from transformers.models.auto import CONFIG_MAPPING, AutoConfig
4
+ from transformers.configuration_utils import PretrainedConfig
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+ class LDPConfig(PretrainedConfig):
9
+ model_type = "ldpnetv2_projector"
10
+
11
+ def __init__(
12
+ self,
13
+ in_hidden_size=1024,
14
+ out_hidden_size=2048,
15
+ grid_size=12,
16
+ **kwargs
17
+ ):
18
+ self.in_hidden_size = in_hidden_size
19
+ self.out_hidden_size = out_hidden_size
20
+ self.grid_size = grid_size
21
+
22
+ super().__init__(**kwargs)
23
+
24
+ class MLPProjectorConfig(PretrainedConfig):
25
+ model_type = "mlp2x_projector"
26
+
27
+ def __init__(
28
+ self,
29
+ hidden_act="gelu",
30
+ in_hidden_size=1024,
31
+ out_hidden_size=2048,
32
+ bias: bool=True,
33
+ **kwargs
34
+ ):
35
+ self.hidden_act = hidden_act
36
+ self.in_hidden_size = in_hidden_size
37
+ self.out_hidden_size = out_hidden_size
38
+ self.bias = bias
39
+
40
+ super().__init__(**kwargs)
41
+
42
+
43
+
44
+ class AX4VLConfig(PretrainedConfig):
45
+ model_type = "a.x-4-vl"
46
+ sub_configs = {
47
+ "text_config": AutoConfig,
48
+ "projector_config": AutoConfig,
49
+ "vision_config": AutoConfig
50
+ }
51
+
52
+ def __init__(
53
+ self,
54
+ vision_config=None,
55
+ projector_config=None,
56
+ text_config=None,
57
+ image_token_index=102400,
58
+ vision_feature_select_strategy="full",
59
+ vision_feature_layer=0,
60
+ tie_word_embeddings=False,
61
+ **kwargs,
62
+ ):
63
+ self.image_token_index = image_token_index
64
+
65
+ if vision_feature_select_strategy not in ["default", "full"]:
66
+ raise ValueError(
67
+ "vision_feature_select_strategy should be one of 'default', 'full'."
68
+ f"Got: {vision_feature_select_strategy}"
69
+ )
70
+
71
+ self.vision_feature_select_strategy = vision_feature_select_strategy
72
+ self.vision_feature_layer = vision_feature_layer
73
+
74
+ if isinstance(vision_config, dict):
75
+ vision_config["model_type"] = (
76
+ vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
77
+ )
78
+ vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
79
+ elif vision_config is None:
80
+ vision_config = CONFIG_MAPPING["siglip_vision_model"](
81
+ intermediate_size=4304,
82
+ hidden_size=1152,
83
+ patch_size=16,
84
+ image_size=384,
85
+ num_hidden_layers=27,
86
+ num_attention_heads=16,
87
+ vision_use_head=False
88
+ )
89
+ self.vision_config = vision_config
90
+
91
+ if isinstance(projector_config, dict):
92
+ projector_config["model_type"] = (
93
+ projector_config["model_type"] if "model_type" in projector_config else "mlp2x"
94
+ )
95
+ projector_config = CONFIG_MAPPING[projector_config["model_type"]](**projector_config)
96
+ elif projector_config is None:
97
+ projector_config = CONFIG_MAPPING["mlp2x_projector"]()
98
+ self.projector_config = projector_config
99
+
100
+ if isinstance(text_config, dict):
101
+ text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2"
102
+ text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
103
+ elif text_config is None:
104
+ text_config = CONFIG_MAPPING["qwen2"]()
105
+
106
+ self.text_config = text_config
107
+
108
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
109
+
110
+
111
+ AutoConfig.register(LDPConfig.model_type, LDPConfig)
112
+ AutoConfig.register(MLPProjectorConfig.model_type, MLPProjectorConfig)
113
+ AutoConfig.register(AX4VLConfig.model_type, AX4VLConfig)
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": [
5
+ 0,
6
+ 27,
7
+ 1
8
+ ],
9
+ "pad_token_id": 1,
10
+ "transformers_version": "4.49.0",
11
+ "use_cache": false
12
+ }
image_processing_ax4vl.py ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Image processor class for Megatron-LM LLaVA.
3
+ """
4
+
5
+ import math
6
+ from typing import Dict, Iterable, List, Optional, Tuple, Union
7
+
8
+ import numpy as np
9
+ from PIL import Image
10
+ from .configuration_ax4vl import AX4VLConfig
11
+
12
+ from transformers.image_utils import (
13
+ OPENAI_CLIP_MEAN,
14
+ OPENAI_CLIP_STD,
15
+ ChannelDimension,
16
+ ImageInput,
17
+ PILImageResampling,
18
+ infer_channel_dimension_format,
19
+ is_scaled_image,
20
+ is_valid_image,
21
+ valid_images,
22
+ make_list_of_images,
23
+ to_numpy_array,
24
+ validate_preprocess_arguments,
25
+ )
26
+ from transformers.image_processing_utils import BatchFeature, get_size_dict, BaseImageProcessor
27
+ from transformers.image_transforms import (
28
+ PaddingMode,
29
+ pad,
30
+ to_channel_dimension_format,
31
+ )
32
+ from transformers.utils import TensorType, logging
33
+ from transformers.models.auto import AutoImageProcessor
34
+
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+ def _get_patch_output_size(image, target_resolution):
39
+ original_width, original_height = image.size
40
+ target_width, target_height = target_resolution
41
+
42
+ scale_w = target_width / original_width
43
+ scale_h = target_height / original_height
44
+
45
+ if scale_w < scale_h:
46
+ new_width = target_width
47
+ new_height = min(math.ceil(original_height * scale_w), target_height)
48
+ else:
49
+ new_height = target_height
50
+ new_width = min(math.ceil(original_width * scale_h), target_width)
51
+
52
+ return new_width, new_height
53
+
54
+ # From https://github.com/OpenGVLab/InternVL/blob/c62fa4f7c850165d7386bdc48ac6bc5a6fab0864/internvl_chat/internvl/train/dataset.py#L685
55
+ # Copyright (c) 2023 OpenGVLab.
56
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
57
+ best_ratio_diff = float('inf')
58
+ best_ratio = (1, 1)
59
+ area = width * height
60
+ for ratio in target_ratios:
61
+ target_aspect_ratio = ratio[0] / ratio[1]
62
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
63
+ if ratio_diff < best_ratio_diff:
64
+ best_ratio_diff = ratio_diff
65
+ best_ratio = ratio
66
+ elif ratio_diff == best_ratio_diff:
67
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
68
+ best_ratio = ratio
69
+ # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
70
+ return best_ratio
71
+
72
+ def _pad_for_patching(image, target_resolution, background_color=(0, 0, 0)):
73
+ """
74
+ Pad an image to a target resolution while maintaining aspect ratio.
75
+ """
76
+ target_width, target_height = target_resolution
77
+ new_width, new_height = _get_patch_output_size(image, target_resolution)
78
+
79
+ paste_x = (target_width - new_width) // 2
80
+ paste_y = (target_height - new_height) // 2
81
+
82
+ padded_image = Image.new(image.mode, target_resolution, background_color)
83
+ padded_image.paste(image, (paste_x, paste_y))
84
+ return padded_image
85
+
86
+ def _resize_for_patching(image, target_resolution):
87
+ new_size = _get_patch_output_size(image, target_resolution)
88
+
89
+ # Resize the image
90
+ resized_image = image.resize(new_size)
91
+
92
+ return resized_image
93
+
94
+ def get_target_ratios(image_size, min_num=1, max_num=6, tile_size=384):
95
+ orig_width, orig_height = image_size
96
+ aspect_ratio = orig_width / orig_height
97
+
98
+ target_ratios = set(
99
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
100
+ i * j <= max_num and i * j >= min_num)
101
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
102
+
103
+ return find_closest_aspect_ratio(
104
+ aspect_ratio, target_ratios, orig_width, orig_height, tile_size
105
+ )
106
+
107
+ # From https://github.com/OpenGVLab/InternVL/blob/c62fa4f7c850165d7386bdc48ac6bc5a6fab0864/internvl_chat/internvl/train/dataset.py#L702
108
+ # Copyright (c) 2023 OpenGVLab.
109
+ def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, padding=False):
110
+ # find the closest aspect ratio to the target
111
+ target_aspect_ratio = get_target_ratios(image.size, min_num=min_num, max_num=max_num, tile_size=image_size)
112
+
113
+ # calculate the target width and height
114
+ target_width = image_size * target_aspect_ratio[0]
115
+ target_height = image_size * target_aspect_ratio[1]
116
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
117
+
118
+ # resize the image
119
+ if padding: # LLaVA-Next tiling strategy
120
+ resized_img = _resize_for_patching(image, (target_width, target_height))
121
+ resized_img = _pad_for_patching(resized_img, (target_width, target_height))
122
+ else: # InternVL tiling strategy
123
+ resized_img = image.resize((target_width, target_height))
124
+ processed_images = []
125
+ for i in range(blocks):
126
+ box = (
127
+ (i % (target_width // image_size)) * image_size,
128
+ (i // (target_width // image_size)) * image_size,
129
+ ((i % (target_width // image_size)) + 1) * image_size,
130
+ ((i // (target_width // image_size)) + 1) * image_size
131
+ )
132
+ # split the image
133
+ split_img = resized_img.crop(box)
134
+ processed_images.append(split_img)
135
+ assert len(processed_images) == blocks
136
+ if use_thumbnail and len(processed_images) != 1:
137
+ thumbnail_img = image.resize((image_size, image_size))
138
+ processed_images.append(thumbnail_img)
139
+ return processed_images
140
+
141
+ class AX4VLImageProcessor(BaseImageProcessor):
142
+
143
+ model_input_names = ["pixel_values"]
144
+
145
+ def __init__(
146
+ self,
147
+ do_resize: bool = True,
148
+ size: Dict[str, int] = None,
149
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
150
+ do_rescale: bool = True,
151
+ rescale_factor: Union[int, float] = 1 / 255,
152
+ do_normalize: bool = True,
153
+ image_mean: Optional[Union[float, List[float]]] = None,
154
+ image_std: Optional[Union[float, List[float]]] = None,
155
+ do_pad: Optional[bool] = True,
156
+ do_tile_pad: Optional[bool] = True,
157
+ do_convert_rgb: bool = True,
158
+ use_thumbnail: bool = True,
159
+ min_num_tiles: int = 1,
160
+ max_num_tiles: int = 6,
161
+ **kwargs,
162
+ ) -> None:
163
+ super().__init__(**kwargs)
164
+ size = dict(size) if size is not None else {"shortest_edge": 224}
165
+ size = get_size_dict(size, default_to_square=False)
166
+
167
+ self.do_resize = do_resize
168
+ self.size = size
169
+ self.resample = resample
170
+ self.do_rescale = do_rescale
171
+ self.rescale_factor = rescale_factor
172
+ self.do_normalize = do_normalize
173
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
174
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
175
+ self.do_pad = do_pad
176
+ self.do_tile_pad = do_tile_pad
177
+ self.do_convert_rgb = do_convert_rgb
178
+ self.use_thumbnail = use_thumbnail
179
+ self.min_num_tiles = min_num_tiles
180
+ self.max_num_tiles = max_num_tiles
181
+
182
+ def pad(
183
+ self,
184
+ image: np.ndarray,
185
+ padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
186
+ mode: PaddingMode = PaddingMode.CONSTANT,
187
+ constant_values: Union[float, Iterable[float]] = 0.0,
188
+ data_format: Optional[Union[str, ChannelDimension]] = None,
189
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
190
+ ) -> np.ndarray:
191
+ """
192
+ Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`)
193
+ dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected
194
+ as input.
195
+
196
+ Args:
197
+ image (`np.ndarray`):
198
+ The image to pad.
199
+ padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
200
+ Padding to apply to the edges of the height, width axes. Can be one of three formats:
201
+ - `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
202
+ - `((before, after),)` yields same before and after pad for height and width.
203
+ - `(pad,)` or int is a shortcut for before = after = pad width for all axes.
204
+ mode (`PaddingMode`):
205
+ The padding mode to use. Can be one of:
206
+ - `"constant"`: pads with a constant value.
207
+ - `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
208
+ vector along each axis.
209
+ - `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
210
+ - `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
211
+ constant_values (`float` or `Iterable[float]`, *optional*):
212
+ The value to use for the padding if `mode` is `"constant"`.
213
+ data_format (`str` or `ChannelDimension`, *optional*):
214
+ The channel dimension format for the output image. Can be one of:
215
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
216
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
217
+ If unset, will use same as the input image.
218
+ input_data_format (`str` or `ChannelDimension`, *optional*):
219
+ The channel dimension format for the input image. Can be one of:
220
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
221
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
222
+ If unset, will use the inferred format of the input image.
223
+
224
+ Returns:
225
+ `np.ndarray`: The padded image.
226
+
227
+ """
228
+
229
+ # call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
230
+ if isinstance(padding, int) or len(padding) != 4:
231
+ return pad(image, padding, mode, constant_values, data_format, input_data_format)
232
+
233
+ if input_data_format is None:
234
+ input_data_format = infer_channel_dimension_format(image)
235
+ if mode == PaddingMode.CONSTANT:
236
+ image = np.pad(image, padding, mode="constant", constant_values=constant_values)
237
+ elif mode == PaddingMode.REFLECT:
238
+ image = np.pad(image, padding, mode="reflect")
239
+ elif mode == PaddingMode.REPLICATE:
240
+ image = np.pad(image, padding, mode="edge")
241
+ elif mode == PaddingMode.SYMMETRIC:
242
+ image = np.pad(image, padding, mode="symmetric")
243
+ else:
244
+ raise ValueError(f"Invalid padding mode: {mode}")
245
+ image = (
246
+ to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
247
+ )
248
+ return image
249
+
250
+ def _pad_for_batching(
251
+ self,
252
+ pixel_values: List[np.ndarray],
253
+ data_format: Optional[Union[str, ChannelDimension]] = None,
254
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
255
+ ):
256
+ """
257
+ Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
258
+
259
+ Args:
260
+ pixel_values (`List[np.ndarray]`):
261
+ An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
262
+ data_format (`str` or `ChannelDimension`, *optional*):
263
+ The channel dimension format for the output image. Can be one of:
264
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
265
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
266
+ If unset, will use same as the input image.
267
+ input_data_format (`str` or `ChannelDimension`, *optional*):
268
+ The channel dimension format for the input image. Can be one of:
269
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
270
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
271
+ If unset, will use the inferred format of the input image.
272
+
273
+ Returns:
274
+ List[`np.ndarray`]: The padded images.
275
+ """
276
+ max_patch = max(len(x) for x in pixel_values)
277
+ pixel_values = [
278
+ self.pad(
279
+ image,
280
+ padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)),
281
+ data_format=data_format,
282
+ input_data_format=input_data_format,
283
+ )
284
+ for image in pixel_values
285
+ ]
286
+
287
+ return pixel_values
288
+
289
+ def _preprocess(
290
+ self,
291
+ images: ImageInput,
292
+ do_resize: bool = None,
293
+ size: Dict[str, int] = None,
294
+ resample: PILImageResampling = None,
295
+ do_rescale: bool = None,
296
+ rescale_factor: float = None,
297
+ do_normalize: bool = None,
298
+ image_mean: Optional[Union[float, List[float]]] = None,
299
+ image_std: Optional[Union[float, List[float]]] = None,
300
+ do_convert_rgb: bool = None,
301
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
302
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
303
+ ):
304
+ images = make_list_of_images(images)
305
+
306
+ all_images = []
307
+ for image in images:
308
+ if do_resize:
309
+ image = image.resize((size["shortest_edge"], size["shortest_edge"]), resample)
310
+
311
+ image = to_numpy_array(image)
312
+
313
+ if input_data_format is None:
314
+ # We assume that all images have the same channel dimension format.
315
+ input_data_format = infer_channel_dimension_format(image)
316
+
317
+ if is_scaled_image(image) and do_rescale:
318
+ logger.warning_once(
319
+ "It looks like you are trying to rescale already rescaled images. If the input"
320
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
321
+ )
322
+ if do_rescale:
323
+ image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
324
+
325
+ if do_normalize:
326
+ image = self.normalize(
327
+ image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
328
+ )
329
+
330
+ all_images.append(image)
331
+
332
+ images = [
333
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
334
+ for image in all_images
335
+ ]
336
+
337
+ return images
338
+
339
+ def preprocess(
340
+ self,
341
+ images: ImageInput,
342
+ do_resize: bool = None,
343
+ size: Dict[str, int] = None,
344
+ resample: PILImageResampling = None,
345
+ do_rescale: bool = None,
346
+ rescale_factor: float = None,
347
+ do_normalize: bool = None,
348
+ image_mean: Optional[Union[float, List[float]]] = None,
349
+ image_std: Optional[Union[float, List[float]]] = None,
350
+ do_pad: Optional[bool] = None,
351
+ do_convert_rgb: bool = None,
352
+ return_tensors: Optional[Union[str, TensorType]] = None,
353
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
354
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
355
+ ):
356
+ """
357
+ Args:
358
+ images (`ImageInput`):
359
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255.
360
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
361
+ Whether to resize the image.
362
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
363
+ Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
364
+ the longest edge resized to keep the input aspect ratio.
365
+ resample (`int`, *optional*, defaults to `self.resample`):
366
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
367
+ has an effect if `do_resize` is set to `True`.
368
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
369
+ Whether to normalize the image.
370
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
371
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
372
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
373
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
374
+ `True`.
375
+ do_pad (`bool`, *optional*, defaults to `self.do_pad`):
376
+ Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
377
+ number of patches in the batch. Padding will be applied to the bottom and right with zeros.
378
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
379
+ Whether to convert the image to RGB.
380
+ return_tensors (`str` or `TensorType`, *optional*):
381
+ The type of tensors to return. Can be one of:
382
+ - Unset: Return a list of `np.ndarray`.
383
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
384
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
385
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
386
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
387
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
388
+ The channel dimension format for the output image. Can be one of:
389
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
390
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
391
+ - Unset: Use the channel dimension format of the input image.
392
+ input_data_format (`ChannelDimension` or `str`, *optional*):
393
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
394
+ from the input image. Can be one of:
395
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
396
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
397
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
398
+
399
+ """
400
+ do_resize = do_resize if do_resize is not None else self.do_resize
401
+ size = size if size is not None else self.size
402
+ size = get_size_dict(size, param_name="size", default_to_square=False)
403
+ resample = resample if resample is not None else self.resample
404
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
405
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
406
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
407
+ image_mean = image_mean if image_mean is not None else self.image_mean
408
+ image_std = image_std if image_std is not None else self.image_std
409
+ do_pad = do_pad if do_pad is not None else self.do_pad
410
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
411
+
412
+ images = make_batched_images(images)
413
+
414
+ if not valid_images(images):
415
+ raise ValueError(
416
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
417
+ "torch.Tensor, tf.Tensor or jax.ndarray."
418
+ )
419
+
420
+ validate_preprocess_arguments(
421
+ do_rescale=do_rescale,
422
+ rescale_factor=rescale_factor,
423
+ do_normalize=do_normalize,
424
+ image_mean=image_mean,
425
+ image_std=image_std,
426
+ do_resize=do_resize,
427
+ size=size,
428
+ resample=resample,
429
+ )
430
+
431
+ new_images, num_tiles = [], []
432
+ image_sizes = [image.size for image in images]
433
+ for image in images:
434
+ if do_convert_rgb and image.mode != "RGB":
435
+ image = image.convert("RGB")
436
+
437
+ image_patches = dynamic_preprocess(
438
+ image,
439
+ min_num=self.min_num_tiles,
440
+ max_num=self.max_num_tiles,
441
+ image_size=self.size["shortest_edge"],
442
+ use_thumbnail=self.use_thumbnail,
443
+ padding=self.do_tile_pad
444
+ )
445
+
446
+ # preprocess patches
447
+ pixel_values = self._preprocess(
448
+ image_patches,
449
+ do_resize=do_resize,
450
+ size=size,
451
+ resample=resample,
452
+ do_rescale=do_rescale,
453
+ rescale_factor=rescale_factor,
454
+ do_normalize=do_normalize,
455
+ image_mean=image_mean,
456
+ image_std=image_std,
457
+ data_format=data_format,
458
+ input_data_format=input_data_format
459
+ )
460
+ pixel_values = np.array(pixel_values)
461
+ new_images.append(pixel_values)
462
+ num_tiles.append(len(image_patches))
463
+
464
+ if do_pad:
465
+ processed_images = self._pad_for_batching(new_images)
466
+ else:
467
+ processed_images = np.concatenate(new_images)
468
+
469
+ return BatchFeature(
470
+ data={"pixel_values": processed_images, "image_sizes": image_sizes, "num_tiles": num_tiles},
471
+ tensor_type=return_tensors
472
+ )
473
+
474
+
475
+ def make_batched_images(images) -> List[List[ImageInput]]:
476
+ """
477
+ Accepts images in list or nested list format, and makes a list of images for preprocessing.
478
+
479
+ Args:
480
+ images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
481
+ The input image.
482
+
483
+ Returns:
484
+ list: A list of images.
485
+ """
486
+ if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
487
+ return [img for img_list in images for img in img_list]
488
+
489
+ elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
490
+ return images
491
+
492
+ elif is_valid_image(images):
493
+ return [images]
494
+
495
+ raise ValueError(f"Could not make batched video from {images}")
496
+
497
+ AutoImageProcessor.register(AX4VLConfig, AX4VLImageProcessor)
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df2cb01ffd10ce08ecc0bc65bf7574b9b6307255d08223f1f9bb293be670f354
3
+ size 4915685072
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33edd933eba6633abf140bb94f5e2f1b6632cf936a790f58400d07ec2df8b602
3
+ size 4932752832
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d092fc7551ec532351529e9e9f7df911e5748bfbe4083b17114848ddae75194
3
+ size 4796984024
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6263e4575c902f940b9c52a36144a748ba46d92ae0cbfca5689d110594184372
3
+ size 734003344
model.safetensors.index.json ADDED
@@ -0,0 +1,789 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15379320288
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "language_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "language_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "language_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "language_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "language_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "language_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "language_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "language_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "language_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "language_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "language_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "language_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "language_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "language_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "language_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "language_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "language_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "language_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "language_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "language_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "language_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "language_model.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "language_model.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "language_model.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "language_model.model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "language_model.model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "language_model.model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "language_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "language_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "language_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "language_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "language_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "language_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "language_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "language_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "language_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "language_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "language_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "language_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "language_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "language_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "language_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "language_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "language_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "language_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "language_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "language_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "language_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "language_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "language_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "language_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "language_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "language_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "language_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "language_model.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "language_model.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "language_model.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "language_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "language_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "language_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "language_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "language_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "language_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "language_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "language_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "language_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "language_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "language_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "language_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
+ "language_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "language_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "language_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "language_model.model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "language_model.model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "language_model.model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "language_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "language_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "language_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "language_model.model.norm.weight": "model-00003-of-00004.safetensors",
345
+ "multi_modal_projector.mlp.mlp.0.bias": "model-00001-of-00004.safetensors",
346
+ "multi_modal_projector.mlp.mlp.0.weight": "model-00001-of-00004.safetensors",
347
+ "multi_modal_projector.mlp.mlp.2.bias": "model-00001-of-00004.safetensors",
348
+ "multi_modal_projector.mlp.mlp.2.weight": "model-00001-of-00004.safetensors",
349
+ "multi_modal_projector.peg.peg.0.bias": "model-00001-of-00004.safetensors",
350
+ "multi_modal_projector.peg.peg.0.weight": "model-00001-of-00004.safetensors",
351
+ "vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
352
+ "vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
353
+ "vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00004.safetensors",
354
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00004.safetensors",
355
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00004.safetensors",
356
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00004.safetensors",
357
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00004.safetensors",
358
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
359
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
360
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
361
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
362
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
363
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
364
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
365
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
366
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
367
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
368
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
369
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
370
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00004.safetensors",
371
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00004.safetensors",
372
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00004.safetensors",
373
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00004.safetensors",
374
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
375
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
376
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
377
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
378
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
379
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
380
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
381
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
382
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
383
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
384
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
385
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
386
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00004.safetensors",
387
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00004.safetensors",
388
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00004.safetensors",
389
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00004.safetensors",
390
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
391
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
392
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
393
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
394
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
395
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
396
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
397
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
398
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
399
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
400
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
401
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
402
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00004.safetensors",
403
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00004.safetensors",
404
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00004.safetensors",
405
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00004.safetensors",
406
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
407
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
408
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
409
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
410
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
411
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
412
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
413
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
414
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
415
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
416
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
417
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
418
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00004.safetensors",
419
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00004.safetensors",
420
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00004.safetensors",
421
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00004.safetensors",
422
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
423
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
424
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
425
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
426
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
427
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
428
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
429
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
430
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
431
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
432
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
433
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
434
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00004.safetensors",
435
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00004.safetensors",
436
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00004.safetensors",
437
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00004.safetensors",
438
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
439
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
440
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
441
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
442
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
443
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
444
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
445
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
446
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
447
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
448
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
449
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
450
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00004.safetensors",
451
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00004.safetensors",
452
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00004.safetensors",
453
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00004.safetensors",
454
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
455
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
456
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
457
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
458
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
459
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
460
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
461
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
462
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
463
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
464
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
465
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
466
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00004.safetensors",
467
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00004.safetensors",
468
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00004.safetensors",
469
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00004.safetensors",
470
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
471
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
472
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
473
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
474
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
475
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
476
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
477
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
478
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
479
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
480
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
481
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
482
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00004.safetensors",
483
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00004.safetensors",
484
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00004.safetensors",
485
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00004.safetensors",
486
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
487
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
488
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
489
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
490
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
491
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
492
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
493
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
494
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
495
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
496
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
497
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
498
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00004.safetensors",
499
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00004.safetensors",
500
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00004.safetensors",
501
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00004.safetensors",
502
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
503
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
504
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
505
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
506
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
507
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
508
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
509
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
510
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
511
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
512
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
513
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
514
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00004.safetensors",
515
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00004.safetensors",
516
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00004.safetensors",
517
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00004.safetensors",
518
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
519
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
520
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
521
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
522
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
523
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
524
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
525
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
526
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
527
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
528
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
529
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
530
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00004.safetensors",
531
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00004.safetensors",
532
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00004.safetensors",
533
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00004.safetensors",
534
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
535
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
536
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
537
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
538
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
539
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
540
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
541
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
542
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
543
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
544
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
545
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
546
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00004.safetensors",
547
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00004.safetensors",
548
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00004.safetensors",
549
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00004.safetensors",
550
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
551
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
552
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
553
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
554
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
555
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
556
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
557
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
558
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
559
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
560
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
561
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
562
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00004.safetensors",
563
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00004.safetensors",
564
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00004.safetensors",
565
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00004.safetensors",
566
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
567
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
568
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
569
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
570
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
571
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
572
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
573
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
574
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
575
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
576
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
577
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
578
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00004.safetensors",
579
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00004.safetensors",
580
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00004.safetensors",
581
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00004.safetensors",
582
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
583
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
584
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
585
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
586
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
587
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
588
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
589
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
590
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
591
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
592
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
593
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
594
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00004.safetensors",
595
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00004.safetensors",
596
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00004.safetensors",
597
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00004.safetensors",
598
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
599
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
600
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
601
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
602
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
603
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
604
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
605
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
606
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
607
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
608
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
609
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
610
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00004.safetensors",
611
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00004.safetensors",
612
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00004.safetensors",
613
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00004.safetensors",
614
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
615
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
616
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
617
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
618
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
619
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
620
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
621
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
622
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
623
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
624
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
625
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
626
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00004.safetensors",
627
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00004.safetensors",
628
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00004.safetensors",
629
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00004.safetensors",
630
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
631
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
632
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
633
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
634
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
635
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
636
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
637
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
638
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
639
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
640
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
641
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
642
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00004.safetensors",
643
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00004.safetensors",
644
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00004.safetensors",
645
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00004.safetensors",
646
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
647
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
648
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
649
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
650
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
651
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
652
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
653
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
654
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
655
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
656
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
657
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
658
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00004.safetensors",
659
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00004.safetensors",
660
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00004.safetensors",
661
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00004.safetensors",
662
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
663
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
664
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
665
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
666
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
667
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
668
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
669
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
670
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
671
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
672
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
673
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
674
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00004.safetensors",
675
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00004.safetensors",
676
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00004.safetensors",
677
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00004.safetensors",
678
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
679
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
680
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
681
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
682
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
683
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
684
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
685
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
686
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
687
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
688
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
689
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
690
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00004.safetensors",
691
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00004.safetensors",
692
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00004.safetensors",
693
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00004.safetensors",
694
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
695
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
696
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
697
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
698
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
699
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
700
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
701
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
702
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
703
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
704
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
705
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
706
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00004.safetensors",
707
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00004.safetensors",
708
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00004.safetensors",
709
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00004.safetensors",
710
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
711
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
712
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
713
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
714
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
715
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
716
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
717
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
718
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
719
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
720
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
721
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
722
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00004.safetensors",
723
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00004.safetensors",
724
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00004.safetensors",
725
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00004.safetensors",
726
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
727
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
728
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
729
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
730
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
731
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
732
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
733
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
734
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
735
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
736
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
737
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
738
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00004.safetensors",
739
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00004.safetensors",
740
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00004.safetensors",
741
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00004.safetensors",
742
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
743
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
744
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
745
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
746
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
747
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
748
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
749
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
750
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
751
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
752
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
753
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
754
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00004.safetensors",
755
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00004.safetensors",
756
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00004.safetensors",
757
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00004.safetensors",
758
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
759
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
760
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
761
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
762
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
763
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
764
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
765
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
766
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
767
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
768
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
769
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
770
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00004.safetensors",
771
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00004.safetensors",
772
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00004.safetensors",
773
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00004.safetensors",
774
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
775
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
776
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
777
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
778
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
779
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
780
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
781
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
782
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
783
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
784
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
785
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
786
+ "vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00004.safetensors",
787
+ "vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00004.safetensors"
788
+ }
789
+ }
modeling_ax4vl.py ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ base code: LLaVA-Next (transformers==4.49.0)
3
+ """
4
+ from typing import List, Optional, Tuple, Union
5
+ import math
6
+
7
+ import torch
8
+ import torch.utils.checkpoint
9
+ from torch import nn
10
+ from .configuration_ax4vl import LDPConfig, MLPProjectorConfig, AX4VLConfig
11
+
12
+ from transformers.activations import ACT2FN
13
+ from transformers.generation import GenerationMixin
14
+ from transformers.models.auto import AutoModel, AutoModelForCausalLM
15
+ from transformers.utils import (
16
+ is_torchdynamo_compiling,
17
+ logging,
18
+ )
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.modeling_utils import PreTrainedModel
21
+ from transformers.modeling_outputs import ModelOutput
22
+ from dataclasses import dataclass
23
+
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ def build_projector(config):
29
+ if config.model_type == "ldpnetv2_projector":
30
+ return LDPProjector(config)
31
+ else:
32
+ raise ValueError(f"Unknown projector type: {config.model_type}")
33
+
34
+ @dataclass
35
+ class AX4CausalLMOutputWithPast(ModelOutput):
36
+ loss: Optional[torch.FloatTensor] = None
37
+ logits: torch.FloatTensor = None
38
+ past_key_values: Optional[List[torch.FloatTensor]] = None
39
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
40
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
41
+ image_hidden_states: Optional[torch.FloatTensor] = None
42
+
43
+
44
+ class BaseAXPretrainedModel(PreTrainedModel):
45
+ config_class = PretrainedConfig
46
+ base_model_prefix = "model"
47
+ supports_gradient_checkpointing = True
48
+ _no_split_modules = ["AXVisionAttention"]
49
+ _skip_keys_device_placement = "past_key_values"
50
+ _supports_cache_class = True
51
+ _supports_flash_attn_2 = True
52
+ _supports_sdpa = True
53
+ _supports_quantized_cache = True
54
+ _supports_static_cache = True
55
+
56
+ def __init__(self, config: PretrainedConfig):
57
+ super().__init__(config)
58
+
59
+ def _init_weights(self, module):
60
+ # important: this ported version of LlavaNext isn't meant for training from scratch - only
61
+ # inference and fine-tuning - so the proper init weights code has been removed - the original codebase
62
+ # https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose
63
+ std = (
64
+ self.config.initializer_range
65
+ if hasattr(self.config, "initializer_range")
66
+ else self.config.text_config.initializer_range
67
+ )
68
+
69
+ if hasattr(module, "class_embedding"):
70
+ module.class_embedding.data.normal_(mean=0.0, std=std)
71
+
72
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
73
+ module.weight.data.normal_(mean=0.0, std=std)
74
+ if module.bias is not None:
75
+ module.bias.data.zero_()
76
+ elif isinstance(module, nn.Embedding):
77
+ module.weight.data.normal_(mean=0.0, std=std)
78
+ if module.padding_idx is not None:
79
+ module.weight.data[module.padding_idx].zero_()
80
+
81
+
82
+
83
+ class AX4VLForConditionalGeneration(BaseAXPretrainedModel, GenerationMixin):
84
+ config_class = AX4VLConfig
85
+
86
+ def __init__(self, config: AX4VLConfig):
87
+ super().__init__(config)
88
+ self.vision_tower = AutoModel.from_config(config.vision_config)
89
+
90
+ self.multi_modal_projector = build_projector(config.projector_config)
91
+ self.vocab_size = config.text_config.vocab_size
92
+ self.language_model = AutoModelForCausalLM.from_config(config.text_config)
93
+ if self.language_model._tied_weights_keys is not None:
94
+ self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
95
+
96
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
97
+ self.post_init()
98
+
99
+ def get_input_embeddings(self):
100
+ return self.language_model.get_input_embeddings()
101
+
102
+ def set_input_embeddings(self, value):
103
+ self.language_model.set_input_embeddings(value)
104
+
105
+ def get_output_embeddings(self):
106
+ return self.language_model.get_output_embeddings()
107
+
108
+ def set_output_embeddings(self, new_embeddings):
109
+ self.language_model.set_output_embeddings(new_embeddings)
110
+
111
+ def set_decoder(self, decoder):
112
+ self.language_model.set_decoder(decoder)
113
+
114
+ def get_decoder(self):
115
+ return self.language_model.get_decoder()
116
+
117
+ def get_image_features(
118
+ self,
119
+ pixel_values: torch.FloatTensor,
120
+ vision_feature_layer: Union[int, List[int]],
121
+ vision_feature_select_strategy: str,
122
+ ):
123
+ if pixel_values.dim() != 4:
124
+ # otherwise has to be stacked from list of (num_patches, num_channels, height, width)
125
+ raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
126
+
127
+ image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
128
+ # If we have one vision feature layer, return the corresponding hidden states,
129
+ # otherwise, select the hidden states of each feature layer and concatenate them
130
+ if isinstance(vision_feature_layer, int):
131
+ if vision_feature_layer == 0:
132
+ selected_image_feature = image_outputs.last_hidden_state
133
+ else:
134
+ selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
135
+ else:
136
+ hs_pool = [image_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
137
+ selected_image_feature = torch.cat(hs_pool, dim=-1)
138
+
139
+ if vision_feature_select_strategy == "default":
140
+ selected_image_feature = selected_image_feature[:, 1:]
141
+ elif vision_feature_select_strategy == "full":
142
+ selected_image_feature = selected_image_feature
143
+
144
+ image_features = self.multi_modal_projector(selected_image_feature)
145
+ return image_features
146
+
147
+ def forward(
148
+ self,
149
+ input_ids: torch.LongTensor = None,
150
+ pixel_values: torch.FloatTensor = None,
151
+ attention_mask: Optional[torch.Tensor] = None,
152
+ position_ids: Optional[torch.LongTensor] = None,
153
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
154
+ inputs_embeds: Optional[torch.FloatTensor] = None,
155
+ vision_feature_layer: Optional[Union[int, List[int]]] = None,
156
+ vision_feature_select_strategy: Optional[str] = None,
157
+ labels: Optional[torch.LongTensor] = None,
158
+ use_cache: Optional[bool] = None,
159
+ output_attentions: Optional[bool] = None,
160
+ output_hidden_states: Optional[bool] = None,
161
+ return_dict: Optional[bool] = None,
162
+ cache_position: Optional[torch.LongTensor] = None,
163
+ logits_to_keep: Union[int, torch.Tensor] = 0,
164
+ **lm_kwargs,
165
+ ) -> Union[Tuple, AX4CausalLMOutputWithPast]:
166
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
167
+ output_hidden_states = (
168
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
169
+ )
170
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
171
+ vision_feature_layer = (
172
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
173
+ )
174
+ vision_feature_select_strategy = (
175
+ vision_feature_select_strategy
176
+ if vision_feature_select_strategy is not None
177
+ else self.config.vision_feature_select_strategy
178
+ )
179
+
180
+ if (input_ids is None) ^ (inputs_embeds is not None):
181
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
182
+
183
+ if pixel_values is not None and inputs_embeds is not None:
184
+ raise ValueError(
185
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
186
+ )
187
+
188
+ if inputs_embeds is None:
189
+ inputs_embeds = self.get_input_embeddings()(input_ids)
190
+
191
+ if pixel_values is not None and pixel_values.size(0) > 0:
192
+ image_features = self.get_image_features(
193
+ pixel_values,
194
+ vision_feature_layer=vision_feature_layer,
195
+ vision_feature_select_strategy=vision_feature_select_strategy,
196
+ )
197
+
198
+ special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
199
+ special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
200
+ if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
201
+ n_image_tokens = (input_ids == self.config.image_token_index).sum()
202
+ n_image_features = image_features.shape[0]
203
+ raise ValueError(
204
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
205
+ )
206
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
207
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
208
+
209
+ outputs = self.language_model(
210
+ attention_mask=attention_mask,
211
+ position_ids=position_ids,
212
+ past_key_values=past_key_values,
213
+ inputs_embeds=inputs_embeds,
214
+ use_cache=use_cache,
215
+ output_attentions=output_attentions,
216
+ output_hidden_states=output_hidden_states,
217
+ return_dict=return_dict,
218
+ cache_position=cache_position,
219
+ logits_to_keep=logits_to_keep,
220
+ **lm_kwargs,
221
+ )
222
+
223
+ logits = outputs[0]
224
+
225
+ loss = None
226
+ if labels is not None:
227
+ # Shift so that tokens < n predict n
228
+ if attention_mask is not None:
229
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
230
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
231
+ shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
232
+ shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
233
+ shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
234
+ else:
235
+ shift_logits = logits[..., :-1, :].contiguous()
236
+ shift_labels = labels[..., 1:].contiguous()
237
+ # Flatten the tokens
238
+ loss_fct = nn.CrossEntropyLoss()
239
+ loss = loss_fct(
240
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
241
+ )
242
+
243
+ if not return_dict:
244
+ output = (logits,) + outputs[1:]
245
+ return (loss,) + output if loss is not None else output
246
+
247
+ return AX4CausalLMOutputWithPast(
248
+ loss=loss,
249
+ logits=logits,
250
+ past_key_values=outputs.past_key_values,
251
+ hidden_states=outputs.hidden_states,
252
+ attentions=outputs.attentions,
253
+ image_hidden_states=image_features if pixel_values is not None else None,
254
+ )
255
+
256
+ def prepare_inputs_for_generation(
257
+ self,
258
+ input_ids,
259
+ past_key_values=None,
260
+ inputs_embeds=None,
261
+ pixel_values=None,
262
+ image_sizes=None,
263
+ attention_mask=None,
264
+ cache_position=None,
265
+ logits_to_keep=None,
266
+ **kwargs,
267
+ ):
268
+ # Overwritten -- in specific circumstances we don't want to forward image inputs to the model
269
+
270
+ model_inputs = self.language_model.prepare_inputs_for_generation(
271
+ input_ids,
272
+ past_key_values=past_key_values,
273
+ inputs_embeds=inputs_embeds,
274
+ attention_mask=attention_mask,
275
+ cache_position=cache_position,
276
+ logits_to_keep=logits_to_keep,
277
+ **kwargs,
278
+ )
279
+
280
+ # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
281
+ # Otherwise we need pixel values to be passed to model
282
+ if cache_position[0] == 0:
283
+ model_inputs["pixel_values"] = pixel_values
284
+ model_inputs["image_sizes"] = image_sizes
285
+
286
+ return model_inputs
287
+
288
+
289
+
290
+
291
+
292
+ class FeatureIRLayer(nn.Module):
293
+ def __init__(self, in_dim: int, out_dim: int) -> None:
294
+ super().__init__()
295
+ self.mlp = nn.Sequential(
296
+ nn.Linear(in_dim, out_dim), nn.GELU(), nn.Linear(out_dim, out_dim)
297
+ )
298
+
299
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
300
+ return self.mlp(x)
301
+
302
+
303
+ class TokenDownLayer(nn.Module):
304
+ def __init__(self, shape) -> None:
305
+ super().__init__()
306
+ self.dwn = nn.Sequential(
307
+ nn.AdaptiveAvgPool2d(shape)
308
+ )
309
+
310
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
311
+ b, num_tokens, c = x.shape
312
+ h = int(math.sqrt(num_tokens))
313
+ assert h * h == num_tokens
314
+ x = x.permute(0, 2, 1).reshape(b, -1, h, h)
315
+ x = self.dwn(x)
316
+ x = x.flatten(2).transpose(1, 2)
317
+ return x
318
+
319
+
320
+ class PosInjectLayer(nn.Module):
321
+ # https://github.com/Meituan-AutoML/Twins/blob/main/gvt.py
322
+ def __init__(
323
+ self,
324
+ in_dim: int,
325
+ out_dim: int,
326
+ stride: int = 1,
327
+ padding: int = 1,
328
+ shape = None) -> None:
329
+ super().__init__()
330
+ self.peg = nn.Sequential(
331
+ nn.Conv2d(in_dim, out_dim, 3, stride, padding, bias=True, groups=out_dim)
332
+ )
333
+ self.pool = None
334
+ if shape is not None:
335
+ self.pool = nn.Sequential(
336
+ nn.AdaptiveAvgPool2d(shape)
337
+ )
338
+
339
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
340
+ b, num_tokens, c = x.shape
341
+ h = int(math.sqrt(num_tokens))
342
+ assert h * h == num_tokens
343
+ cnn_feat = x.transpose(1, 2).view(b, c, h, h)
344
+ if self.pool is not None:
345
+ x = self.peg(cnn_feat) + self.pool(cnn_feat)
346
+ else:
347
+ x = self.peg(cnn_feat) + cnn_feat
348
+ x = x.flatten(2).transpose(1, 2)
349
+ return x
350
+
351
+ class LDPProjector(PreTrainedModel):
352
+ config_class = LDPConfig
353
+ _no_split_modules = []
354
+
355
+ def __init__(self, config):
356
+ super().__init__(config)
357
+ inc, ouc = config.in_hidden_size, config.out_hidden_size
358
+ grid = config.grid_size
359
+ self.mlp = FeatureIRLayer(inc, ouc)
360
+ self.dwn = TokenDownLayer((grid, grid))
361
+ self.peg = PosInjectLayer(ouc, ouc, stride=1)
362
+
363
+ def forward(self, x):
364
+ x = self.mlp(x)
365
+ x = self.dwn(x)
366
+ x = self.peg(x)
367
+ return x
368
+
369
+ class MLPProjector(PreTrainedModel):
370
+ config_class = MLPProjectorConfig
371
+ _no_split_modules = []
372
+
373
+ def __init__(self, config):
374
+ super().__init__(config)
375
+
376
+ self.linear_1 = nn.Linear(config.in_hidden_size, config.out_hidden_size, bias=config.bias)
377
+ self.act = ACT2FN[config.hidden_act]
378
+ self.linear_2 = nn.Linear(config.out_hidden_size, config.out_hidden_size, bias=config.bias)
379
+
380
+ def forward(self, image_features):
381
+ hidden_states = self.linear_1(image_features)
382
+ hidden_states = self.act(hidden_states)
383
+ hidden_states = self.linear_2(hidden_states)
384
+ return hidden_states
385
+
preprocessor_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoImageProcessor": "image_processing_ax4vl.AX4VLImageProcessor",
4
+ "AutoProcessor": "processing_ax4vl.AX4VLProcessor"
5
+ },
6
+ "do_convert_rgb": true,
7
+ "do_normalize": true,
8
+ "do_pad": false,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "do_tile_pad": false,
12
+ "image_mean": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "image_processor_type": "AX4VLImageProcessor",
18
+ "image_std": [
19
+ 0.5,
20
+ 0.5,
21
+ 0.5
22
+ ],
23
+ "max_num_tiles": 12,
24
+ "min_num_tiles": 1,
25
+ "processor_class": "AX4VLProcessor",
26
+ "resample": 2,
27
+ "rescale_factor": 0.00392156862745098,
28
+ "size": {
29
+ "shortest_edge": 384
30
+ },
31
+ "use_thumbnail": true
32
+ }
processing_ax4vl.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Union
2
+ from .configuration_ax4vl import AX4VLConfig
3
+ from transformers.models.auto import AutoProcessor
4
+ from transformers.feature_extraction_utils import BatchFeature
5
+ from transformers.image_utils import ImageInput
6
+ from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
7
+ from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, _validate_images_text_input_order
8
+
9
+
10
+
11
+ class BaseAXProcessor(ProcessorMixin):
12
+ attributes = ["image_processor", "tokenizer"]
13
+ image_processor_class = "AutoImageProcessor"
14
+ tokenizer_class = "AutoTokenizer"
15
+
16
+
17
+ class AX4VLProcessorKwargs(ProcessingKwargs, total=False):
18
+ _defaults = {
19
+ "text_kwargs": {
20
+ "padding": False,
21
+ },
22
+ "images_kwargs": {
23
+ "do_pad": False,
24
+ },
25
+ }
26
+
27
+
28
+ class AX4VLProcessor(BaseAXProcessor):
29
+ valid_kwargs = [
30
+ "chat_template",
31
+ "patch_size",
32
+ "num_tokens_per_tile",
33
+ "image_token",
34
+ ]
35
+
36
+ def __init__(
37
+ self,
38
+ image_processor=None,
39
+ tokenizer=None,
40
+ patch_size=16,
41
+ num_tokens_per_tile=144,
42
+ image_token="<image>", # set the default and let users change if they have peculiar special tokens in rare cases
43
+ chat_template=None,
44
+ **kwargs
45
+ ):
46
+ self.patch_size = patch_size
47
+ self.num_tokens_per_tile = num_tokens_per_tile
48
+ self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
49
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
50
+
51
+ def __call__(
52
+ self,
53
+ images: ImageInput = None,
54
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
55
+ conversations: List = None,
56
+ **kwargs
57
+ ) -> BatchFeature:
58
+ if images is None and conversations is None and text is None:
59
+ raise ValueError("You have to specify at least images, text or conversation.")
60
+
61
+ if not text and conversations is not None:
62
+ if isinstance(conversations[0], dict):
63
+ conversations = [conversations]
64
+ text = [self.apply_chat_template(conv, **kwargs) for conv in conversations]
65
+
66
+ images, text = _validate_images_text_input_order(images, text)
67
+
68
+ output_kwargs = self._merge_kwargs(
69
+ AX4VLProcessorKwargs,
70
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
71
+ **kwargs,
72
+ )
73
+
74
+ if images is not None:
75
+ image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
76
+ else:
77
+ image_inputs = {}
78
+
79
+ prompt_strings = text
80
+ if image_inputs:
81
+ num_tiles = iter(image_inputs["num_tiles"])
82
+ prompt_strings = []
83
+ for sample in text:
84
+ while self.image_token in sample:
85
+ num_tile = next(num_tiles)
86
+ num_image_tokens = num_tile * self.num_tokens_per_tile
87
+ sample = sample.replace(self.image_token, "<placeholder>" * num_image_tokens, 1)
88
+ prompt_strings.append(sample)
89
+ prompt_strings = [sample.replace("<placeholder>", self.image_token) for sample in prompt_strings]
90
+
91
+ text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
92
+
93
+ if "num_tiles" in image_inputs:
94
+ del image_inputs["num_tiles"]
95
+ return BatchFeature(data={**text_inputs, **image_inputs})
96
+
97
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
98
+ def batch_decode(self, *args, **kwargs):
99
+ """
100
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
101
+ refer to the docstring of this method for more information.
102
+ """
103
+ return self.tokenizer.batch_decode(*args, **kwargs)
104
+
105
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
106
+ def decode(self, *args, **kwargs):
107
+ """
108
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
109
+ the docstring of this method for more information.
110
+ """
111
+ return self.tokenizer.decode(*args, **kwargs)
112
+
113
+ @property
114
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
115
+ def model_input_names(self):
116
+ tokenizer_input_names = self.tokenizer.model_input_names
117
+ image_processor_input_names = self.image_processor.model_input_names
118
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
119
+
120
+
121
+ AutoProcessor.register(AX4VLConfig, AX4VLProcessor)
processor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_ax4vl.AX4VLProcessor"
4
+ },
5
+ "image_token": "<|extra_id_11|>",
6
+ "num_tokens_per_tile": 144,
7
+ "patch_size": 16,
8
+ "processor_class": "AX4VLProcessor"
9
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|pad|>",
5
+ "<|unk|>",
6
+ "<|sep|>",
7
+ "<|mask|>",
8
+ "<|cls|>",
9
+ "<|image|>",
10
+ "<|audio|>",
11
+ "<|user|>",
12
+ "<|system|>",
13
+ "<|assistant|>",
14
+ "<|extra_id_0|>",
15
+ "<|extra_id_1|>",
16
+ "<|extra_id_2|>",
17
+ "<|extra_id_3|>",
18
+ "<|extra_id_4|>",
19
+ "<|extra_id_5|>",
20
+ "<|extra_id_6|>",
21
+ "<|extra_id_7|>",
22
+ "<|extra_id_8|>",
23
+ "<|extra_id_9|>",
24
+ "<|extra_id_10|>",
25
+ "<|extra_id_11|>",
26
+ "<|extra_id_12|>",
27
+ "<|extra_id_13|>",
28
+ "<|im_start|>",
29
+ "<|im_sep|>",
30
+ "<|im_end|>",
31
+ "<|resident_reg|>",
32
+ "<|foreigner_reg|>",
33
+ "<|business_reg|>",
34
+ "<|credit_card|>",
35
+ "<|passport|>",
36
+ "<|driver_license|>",
37
+ "<|telephone|>",
38
+ "<|health_insurance|>",
39
+ "<|bank_account|>"
40
+ ],
41
+ "bos_token": {
42
+ "content": "<|endoftext|>",
43
+ "lstrip": false,
44
+ "normalized": false,
45
+ "rstrip": false,
46
+ "single_word": false
47
+ },
48
+ "cls_token": {
49
+ "content": "<|cls|>",
50
+ "lstrip": false,
51
+ "normalized": false,
52
+ "rstrip": false,
53
+ "single_word": false
54
+ },
55
+ "eos_token": {
56
+ "content": "<|im_end|>",
57
+ "lstrip": false,
58
+ "normalized": false,
59
+ "rstrip": false,
60
+ "single_word": false
61
+ },
62
+ "mask_token": {
63
+ "content": "<|mask|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false
68
+ },
69
+ "pad_token": {
70
+ "content": "<|pad|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false
75
+ },
76
+ "sep_token": {
77
+ "content": "<|sep|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false
82
+ },
83
+ "unk_token": {
84
+ "content": "<|unk|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false
89
+ }
90
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<|pad|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "<|unk|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "3": {
31
+ "content": "<|sep|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "4": {
39
+ "content": "<|mask|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "5": {
47
+ "content": "<|cls|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "6": {
55
+ "content": "<|image|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "7": {
63
+ "content": "<|audio|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "8": {
71
+ "content": "<|user|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "9": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "10": {
87
+ "content": "<|assistant|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "11": {
95
+ "content": "<|extra_id_0|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "12": {
103
+ "content": "<|extra_id_1|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "13": {
111
+ "content": "<|extra_id_2|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "14": {
119
+ "content": "<|extra_id_3|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "15": {
127
+ "content": "<|extra_id_4|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "16": {
135
+ "content": "<|extra_id_5|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "17": {
143
+ "content": "<|extra_id_6|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "18": {
151
+ "content": "<|extra_id_7|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "19": {
159
+ "content": "<|extra_id_8|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "20": {
167
+ "content": "<|extra_id_9|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "21": {
175
+ "content": "<|extra_id_10|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "22": {
183
+ "content": "<|extra_id_11|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "23": {
191
+ "content": "<|extra_id_12|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "24": {
199
+ "content": "<|extra_id_13|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "25": {
207
+ "content": "<|im_start|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "26": {
215
+ "content": "<|im_sep|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "27": {
223
+ "content": "<|im_end|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "28": {
231
+ "content": "<|resident_reg|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "29": {
239
+ "content": "<|foreigner_reg|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "30": {
247
+ "content": "<|business_reg|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "31": {
255
+ "content": "<|credit_card|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "32": {
263
+ "content": "<|passport|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "33": {
271
+ "content": "<|driver_license|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "34": {
279
+ "content": "<|telephone|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": true
285
+ },
286
+ "35": {
287
+ "content": "<|health_insurance|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": false,
291
+ "single_word": false,
292
+ "special": true
293
+ },
294
+ "36": {
295
+ "content": "<|bank_account|>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": false,
299
+ "single_word": false,
300
+ "special": true
301
+ },
302
+ "37": {
303
+ "content": "</tool_output>",
304
+ "lstrip": false,
305
+ "normalized": false,
306
+ "rstrip": false,
307
+ "single_word": false,
308
+ "special": false
309
+ },
310
+ "38": {
311
+ "content": "<tool_output>",
312
+ "lstrip": false,
313
+ "normalized": false,
314
+ "rstrip": false,
315
+ "single_word": false,
316
+ "special": false
317
+ },
318
+ "39": {
319
+ "content": "</tool_call>",
320
+ "lstrip": false,
321
+ "normalized": false,
322
+ "rstrip": false,
323
+ "single_word": false,
324
+ "special": false
325
+ },
326
+ "40": {
327
+ "content": "<tool_call>",
328
+ "lstrip": false,
329
+ "normalized": false,
330
+ "rstrip": false,
331
+ "single_word": false,
332
+ "special": false
333
+ }
334
+ },
335
+ "additional_special_tokens": [
336
+ "<|endoftext|>",
337
+ "<|pad|>",
338
+ "<|unk|>",
339
+ "<|sep|>",
340
+ "<|mask|>",
341
+ "<|cls|>",
342
+ "<|image|>",
343
+ "<|audio|>",
344
+ "<|user|>",
345
+ "<|system|>",
346
+ "<|assistant|>",
347
+ "<|extra_id_0|>",
348
+ "<|extra_id_1|>",
349
+ "<|extra_id_2|>",
350
+ "<|extra_id_3|>",
351
+ "<|extra_id_4|>",
352
+ "<|extra_id_5|>",
353
+ "<|extra_id_6|>",
354
+ "<|extra_id_7|>",
355
+ "<|extra_id_8|>",
356
+ "<|extra_id_9|>",
357
+ "<|extra_id_10|>",
358
+ "<|extra_id_11|>",
359
+ "<|extra_id_12|>",
360
+ "<|extra_id_13|>",
361
+ "<|im_start|>",
362
+ "<|im_sep|>",
363
+ "<|im_end|>",
364
+ "<|resident_reg|>",
365
+ "<|foreigner_reg|>",
366
+ "<|business_reg|>",
367
+ "<|credit_card|>",
368
+ "<|passport|>",
369
+ "<|driver_license|>",
370
+ "<|telephone|>",
371
+ "<|health_insurance|>",
372
+ "<|bank_account|>"
373
+ ],
374
+ "bos_token": "<|endoftext|>",
375
+ "chat_template": "{%- if tools is iterable and tools | length > 0 %}\n {{- '<|im_start|><|system|>'}}\n {{- '당신은 도구 호출 기능을 갖춘 유용한 도우미입니다. 사용자의 요청을 처리하기 위해서 필요한 도구가 주어진 목록에 있는 경우 도구 호출로 응답하세요.\n필요한 도구가 목록에 없는 경우에는 도구 호출 없이 사용자가 요구한 정보를 제공하세요.\n필요한 도구가 목록에 있지만 해당 도구를 호출하는데 필요한 argument 정보가 부족한 경우 해당 정보를 사용자에게 요청하세요.\n사용자의 요청을 처리하기 위해 여러번 도구를 호출할 수 있어야 합니다.\n도구 호출 이후 도구 실행 결과를 입력으로 받으면 해당 결과를 활용하여 답변을 생성하세요.\n\n다음은 접근할 수 있는 도구들의 목록 입니다:\n<tools>\n'}}\n {%- for t in tools %}\n {{- t | tojson }}\n {{- '\n' }}\n {%- endfor %}\n {{- '</tools>' }}\n {{- '\n\n도구를 호출하려면 아래의 JSON으로 응답하세요.\n도구 호출 형식: <tool_call>{\"name\": 도구 이름, \"arguments\": dictionary 형태의 도구 인자값}</tool_call>' }}\n \n {%- if messages[0].role == 'system' %}\n {{- '\n\n' + messages[0].content}}\n {% set dummy = messages.pop(0) %}\n {%- endif %} \n {{- '<|im_end|>' }}\n {%- endif %}\n \n {%- for message in messages %}\n {%- if message.role == 'system' %}\n {{- '<|im_start|><|system|>' + message.content + '<|im_end|>'}}\n {%- elif message.role == 'user' %}\n {{- '<|im_start|><|user|>' + message.content + '<|im_end|>'}}\n {%- elif message.role == 'assistant' %}\n {{- '<|im_start|><|assistant|>'}}\n {%- if message.content is defined %}\n {{- message.content}}\n {%- endif %}\n {%- if message.tool_calls is defined %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>' }}\n {{- '{' }}\n {{- '\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\"' }}\n {%- if tool_call.arguments is defined %}\n {{- ', ' }}\n {{- '\"arguments\": ' }}\n {{- tool_call.arguments|tojson }}\n {%- endif %}\n {{- '}' }}\n {{- '</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>'}}\n \n {%- elif message.role == 'tool' %}\n {{- '<|im_start|><|extra_id_13|><tool_output>' + message.content + '</tool_output><|im_end|>'}}\n {%- endif %}\n {%- endfor %}\n {%- if add_generation_prompt %}\n {{- '<|im_start|><|assistant|>'}}\n {%- endif %}",
376
+ "clean_up_tokenization_spaces": true,
377
+ "auto_map": {
378
+ "AutoProcessor": "processing_ax4vl.AX4VLProcessor"
379
+ },
380
+ "cls_token": "<|cls|>",
381
+ "eod_token": "<|endoftext|>",
382
+ "eos_token": "<|im_end|>",
383
+ "errors": "replace",
384
+ "extra_special_tokens": {},
385
+ "mask_token": "<|mask|>",
386
+ "model_max_length": 8192,
387
+ "pad_token": "<|pad|>",
388
+ "padding_side": "right",
389
+ "processor_class": "AX4VLProcessor",
390
+ "sep_token": "<|sep|>",
391
+ "tokenizer_class": "GPT2Tokenizer",
392
+ "truncation_side": "left",
393
+ "unk_token": "<|unk|>",
394
+ "vocab_size": 102400
395
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff