Minsoo Kang
commited on
Commit
·
7221cb9
1
Parent(s):
dd1db9d
initial commit
Browse files- chat_template.json +3 -0
- config.json +152 -0
- configuration_ax4vl.py +113 -0
- generation_config.json +12 -0
- image_processing_ax4vl.py +497 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +789 -0
- modeling_ax4vl.py +385 -0
- preprocessor_config.json +32 -0
- processing_ax4vl.py +121 -0
- processor_config.json +9 -0
- special_tokens_map.json +90 -0
- tokenizer_config.json +395 -0
- vocab.json +0 -0
chat_template.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chat_template": "{%- if tools is iterable and tools | length > 0 %}\n {{- '<|im_start|><|system|>'}}\n {{- '\ub2f9\uc2e0\uc740 \ub3c4\uad6c \ud638\ucd9c \uae30\ub2a5\uc744 \uac16\ucd98 \uc720\uc6a9\ud55c \ub3c4\uc6b0\ubbf8\uc785\ub2c8\ub2e4. \uc0ac\uc6a9\uc790\uc758 \uc694\uccad\uc744 \ucc98\ub9ac\ud558\uae30 \uc704\ud574\uc11c \ud544\uc694\ud55c \ub3c4\uad6c\uac00 \uc8fc\uc5b4\uc9c4 \ubaa9\ub85d\uc5d0 \uc788\ub294 \uacbd\uc6b0 \ub3c4\uad6c \ud638\ucd9c\ub85c \uc751\ub2f5\ud558\uc138\uc694.\n\ud544\uc694\ud55c \ub3c4\uad6c\uac00 \ubaa9\ub85d\uc5d0 \uc5c6\ub294 \uacbd\uc6b0\uc5d0\ub294 \ub3c4\uad6c \ud638\ucd9c \uc5c6\uc774 \uc0ac\uc6a9\uc790\uac00 \uc694\uad6c\ud55c \uc815\ubcf4\ub97c \uc81c\uacf5\ud558\uc138\uc694.\n\ud544\uc694\ud55c \ub3c4\uad6c\uac00 \ubaa9\ub85d\uc5d0 \uc788\uc9c0\ub9cc \ud574\ub2f9 \ub3c4\uad6c\ub97c \ud638\ucd9c\ud558\ub294\ub370 \ud544\uc694\ud55c argument \uc815\ubcf4\uac00 \ubd80\uc871\ud55c \uacbd\uc6b0 \ud574\ub2f9 \uc815\ubcf4\ub97c \uc0ac\uc6a9\uc790\uc5d0\uac8c \uc694\uccad\ud558\uc138\uc694.\n\uc0ac\uc6a9\uc790\uc758 \uc694\uccad\uc744 \ucc98\ub9ac\ud558\uae30 \uc704\ud574 \uc5ec\ub7ec\ubc88 \ub3c4\uad6c\ub97c \ud638\ucd9c\ud560 \uc218 \uc788\uc5b4\uc57c \ud569\ub2c8\ub2e4.\n\ub3c4\uad6c \ud638\ucd9c \uc774\ud6c4 \ub3c4\uad6c \uc2e4\ud589 \uacb0\uacfc\ub97c \uc785\ub825\uc73c\ub85c \ubc1b\uc73c\uba74 \ud574\ub2f9 \uacb0\uacfc\ub97c \ud65c\uc6a9\ud558\uc5ec \ub2f5\ubcc0\uc744 \uc0dd\uc131\ud558\uc138\uc694.\n\n\ub2e4\uc74c\uc740 \uc811\uadfc\ud560 \uc218 \uc788\ub294 \ub3c4\uad6c\ub4e4\uc758 \ubaa9\ub85d \uc785\ub2c8\ub2e4:\n<tools>\n'}}\n {%- for t in tools %}\n {{- t | tojson }}\n {{- '\n' }}\n {%- endfor %}\n {{- '</tools>' }}\n {{- '\n\n\ub3c4\uad6c\ub97c \ud638\ucd9c\ud558\ub824\uba74 \uc544\ub798\uc758 JSON\uc73c\ub85c \uc751\ub2f5\ud558\uc138\uc694.\n\ub3c4\uad6c \ud638\ucd9c \ud615\uc2dd: <tool_call>{\"name\": \ub3c4\uad6c \uc774\ub984, \"arguments\": dictionary \ud615\ud0dc\uc758 \ub3c4\uad6c \uc778\uc790\uac12}</tool_call>' }}\n \n {%- if messages[0].role == 'system' %}\n {{- '\n\n' + messages[0].content}}\n {% set dummy = messages.pop(0) %}\n {%- endif %} \n {{- '<|im_end|>' }}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if loop.first and message.role != 'system' %}\n {{- '<|im_start|><|system|>\ub2f9\uc2e0\uc740 \uc720\uc6a9\ud55c \uc5b8\uc5b4 \ubc0f \uc2dc\uac01 \ub3c4\uc6b0\ubbf8\uc785\ub2c8\ub2e4. \uc0ac\uc6a9\uc790\uac00 \uc81c\uacf5\ud558\ub294 \uc2dc\uac01\uc801 \ucf58\ud150\uce20\ub97c \uc774\ud574\ud560 \uc218 \uc788\uc73c\uba70, \uc790\uc5f0\uc5b4\ub97c \uc0ac\uc6a9\ud558\uc5ec \uc0ac\uc6a9\uc790\uc5d0\uac8c \ub2e4\uc591\ud55c \uc791\uc5c5\uc744 \uc9c0\uc6d0\ud569\ub2c8\ub2e4.<|im_end|>' }}\n {%- endif %}\n\n {%- if message.role == 'system' %}\n {{- '<|im_start|><|system|>' + message.content + '<|im_end|>'}}\n {%- elif message.role == 'user' %}\n {%- if message.content is string %}\n {{- '<|im_start|><|user|>' + message.content + '<|im_end|>'}}\n {%- else %}\n {{- '<|im_start|><|user|>' }}\n {%- for content in message.content %}\n {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}\n {{- '<|extra_id_11|>' }}\n {%- elif 'text' in content %}\n {{- content.text }}\n {%- endif %}\n {%- endfor %}\n {{- '<|im_end|>' }}\n {%- endif %}\n {%- elif message.role == 'assistant' %}\n {{- '<|im_start|><|assistant|>'}}\n {%- if message.content is defined %}\n {%- if message.content is string %}\n {{- message.content }}\n {%- else %}\n {%- for content in message.content %}\n {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}\n {{- '<image>' }}\n {%- elif 'text' in content %}\n {{- content.text }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {%- endif %}\n {%- if message.tool_calls is defined %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>' }}\n {{- '{' }}\n {{- '\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\"' }}\n {%- if tool_call.arguments is defined %}\n {{- ', ' }}\n {{- '\"arguments\": ' }}\n {{- tool_call.arguments|tojson }}\n {%- endif %}\n {{- '}' }}\n {{- '</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>'}}\n\n {%- elif message.role == 'tool' %}\n {{- '<|im_start|><|extra_id_13|><tool_output>' + message.content + '</tool_output><|im_end|>'}}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|><|assistant|>'}}\n{%- endif %}"
|
| 3 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"AX4VLForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_ax4vl.AX4VLConfig",
|
| 7 |
+
"AutoModelForCausalLM": "modeling_ax4vl.AX4VLForConditionalGeneration",
|
| 8 |
+
"AutoProcessor": "processing_ax4vl.AX4VLProcessor"
|
| 9 |
+
},
|
| 10 |
+
"downsample_ratio": 0.5,
|
| 11 |
+
"dynamic_image_size": true,
|
| 12 |
+
"force_image_size": 384,
|
| 13 |
+
"image_token_index": 22,
|
| 14 |
+
"llm_config": {
|
| 15 |
+
"_attn_implementation_autoset": false,
|
| 16 |
+
"add_cross_attention": false,
|
| 17 |
+
"architectures": [
|
| 18 |
+
"Qwen2ForCausalLM"
|
| 19 |
+
],
|
| 20 |
+
"attention_dropout": 0.0,
|
| 21 |
+
"attn_implementation": "flash_attention_2",
|
| 22 |
+
"bad_words_ids": null,
|
| 23 |
+
"begin_suppress_tokens": null,
|
| 24 |
+
"bos_token_id": 0,
|
| 25 |
+
"chunk_size_feed_forward": 0,
|
| 26 |
+
"cross_attention_hidden_size": null,
|
| 27 |
+
"decoder_start_token_id": null,
|
| 28 |
+
"diversity_penalty": 0.0,
|
| 29 |
+
"do_sample": false,
|
| 30 |
+
"early_stopping": false,
|
| 31 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 32 |
+
"eos_token_id": 0,
|
| 33 |
+
"exponential_decay_length_penalty": null,
|
| 34 |
+
"finetuning_task": null,
|
| 35 |
+
"forced_bos_token_id": null,
|
| 36 |
+
"forced_eos_token_id": null,
|
| 37 |
+
"hidden_act": "silu",
|
| 38 |
+
"hidden_size": 3584,
|
| 39 |
+
"id2label": {
|
| 40 |
+
"0": "LABEL_0",
|
| 41 |
+
"1": "LABEL_1"
|
| 42 |
+
},
|
| 43 |
+
"initializer_range": 0.02,
|
| 44 |
+
"intermediate_size": 18944,
|
| 45 |
+
"is_decoder": false,
|
| 46 |
+
"is_encoder_decoder": false,
|
| 47 |
+
"label2id": {
|
| 48 |
+
"LABEL_0": 0,
|
| 49 |
+
"LABEL_1": 1
|
| 50 |
+
},
|
| 51 |
+
"length_penalty": 1.0,
|
| 52 |
+
"max_length": 20,
|
| 53 |
+
"max_position_embeddings": 16384,
|
| 54 |
+
"max_window_layers": 28,
|
| 55 |
+
"min_length": 0,
|
| 56 |
+
"model_type": "qwen2",
|
| 57 |
+
"no_repeat_ngram_size": 0,
|
| 58 |
+
"num_attention_heads": 28,
|
| 59 |
+
"num_beam_groups": 1,
|
| 60 |
+
"num_beams": 1,
|
| 61 |
+
"num_hidden_layers": 28,
|
| 62 |
+
"num_key_value_heads": 4,
|
| 63 |
+
"num_return_sequences": 1,
|
| 64 |
+
"output_attentions": false,
|
| 65 |
+
"output_hidden_states": false,
|
| 66 |
+
"output_scores": false,
|
| 67 |
+
"pad_token_id": 1,
|
| 68 |
+
"prefix": null,
|
| 69 |
+
"problem_type": null,
|
| 70 |
+
"pruned_heads": {},
|
| 71 |
+
"remove_invalid_values": false,
|
| 72 |
+
"repetition_penalty": 1.0,
|
| 73 |
+
"return_dict": true,
|
| 74 |
+
"return_dict_in_generate": false,
|
| 75 |
+
"rms_norm_eps": 1e-05,
|
| 76 |
+
"rope_scaling": null,
|
| 77 |
+
"rope_theta": 1000000,
|
| 78 |
+
"sep_token_id": null,
|
| 79 |
+
"sliding_window": null,
|
| 80 |
+
"suppress_tokens": null,
|
| 81 |
+
"task_specific_params": null,
|
| 82 |
+
"temperature": 1.0,
|
| 83 |
+
"tf_legacy_loss": false,
|
| 84 |
+
"tie_encoder_decoder": false,
|
| 85 |
+
"tie_word_embeddings": false,
|
| 86 |
+
"tokenizer_class": null,
|
| 87 |
+
"top_k": 50,
|
| 88 |
+
"top_p": 1.0,
|
| 89 |
+
"torch_dtype": "bfloat16",
|
| 90 |
+
"torchscript": false,
|
| 91 |
+
"typical_p": 1.0,
|
| 92 |
+
"use_bfloat16": false,
|
| 93 |
+
"use_cache": false,
|
| 94 |
+
"use_sliding_window": false,
|
| 95 |
+
"vocab_size": 102400
|
| 96 |
+
},
|
| 97 |
+
"max_dynamic_patch": 12,
|
| 98 |
+
"max_num_tiles": 12,
|
| 99 |
+
"min_dynamic_patch": 1,
|
| 100 |
+
"min_num_tiles": 1,
|
| 101 |
+
"model_type": "a.x-4-vl",
|
| 102 |
+
"pad_token_id": 1,
|
| 103 |
+
"projector_config": {
|
| 104 |
+
"grid_size": 12,
|
| 105 |
+
"in_hidden_size": 1152,
|
| 106 |
+
"model_type": "ldpnetv2_projector",
|
| 107 |
+
"out_hidden_size": 3584,
|
| 108 |
+
"torch_dtype": "bfloat16"
|
| 109 |
+
},
|
| 110 |
+
"ps_version": "v2",
|
| 111 |
+
"select_layer": -1,
|
| 112 |
+
"template": "axvlm",
|
| 113 |
+
"text_config": {
|
| 114 |
+
"architectures": [
|
| 115 |
+
"Qwen2ForCausalLM"
|
| 116 |
+
],
|
| 117 |
+
"attn_implementation": "flash_attention_2",
|
| 118 |
+
"bos_token_id": 0,
|
| 119 |
+
"eos_token_id": 0,
|
| 120 |
+
"hidden_size": 3584,
|
| 121 |
+
"intermediate_size": 18944,
|
| 122 |
+
"max_position_embeddings": 16384,
|
| 123 |
+
"model_type": "qwen2",
|
| 124 |
+
"num_attention_heads": 28,
|
| 125 |
+
"num_hidden_layers": 28,
|
| 126 |
+
"num_key_value_heads": 4,
|
| 127 |
+
"pad_token_id": 1,
|
| 128 |
+
"rms_norm_eps": 1e-05,
|
| 129 |
+
"rope_theta": 1000000,
|
| 130 |
+
"sliding_window": null,
|
| 131 |
+
"torch_dtype": "bfloat16",
|
| 132 |
+
"use_cache": false,
|
| 133 |
+
"vocab_size": 102400
|
| 134 |
+
},
|
| 135 |
+
"tie_word_embeddings": false,
|
| 136 |
+
"torch_dtype": "bfloat16",
|
| 137 |
+
"transformers_version": "4.49.0",
|
| 138 |
+
"use_thumbnail": true,
|
| 139 |
+
"vision_config": {
|
| 140 |
+
"drop_path_rate": 0.0,
|
| 141 |
+
"hidden_size": 1152,
|
| 142 |
+
"image_size": 384,
|
| 143 |
+
"intermediate_size": 4304,
|
| 144 |
+
"model_type": "siglip_vision_model",
|
| 145 |
+
"num_attention_heads": 16,
|
| 146 |
+
"num_hidden_layers": 27,
|
| 147 |
+
"torch_dtype": "bfloat16",
|
| 148 |
+
"vision_use_head": false
|
| 149 |
+
},
|
| 150 |
+
"vision_feature_layer": 0,
|
| 151 |
+
"vision_feature_select_strategy": "full"
|
| 152 |
+
}
|
configuration_ax4vl.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
from transformers.utils import logging
|
| 3 |
+
from transformers.models.auto import CONFIG_MAPPING, AutoConfig
|
| 4 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
+
|
| 6 |
+
logger = logging.get_logger(__name__)
|
| 7 |
+
|
| 8 |
+
class LDPConfig(PretrainedConfig):
|
| 9 |
+
model_type = "ldpnetv2_projector"
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
in_hidden_size=1024,
|
| 14 |
+
out_hidden_size=2048,
|
| 15 |
+
grid_size=12,
|
| 16 |
+
**kwargs
|
| 17 |
+
):
|
| 18 |
+
self.in_hidden_size = in_hidden_size
|
| 19 |
+
self.out_hidden_size = out_hidden_size
|
| 20 |
+
self.grid_size = grid_size
|
| 21 |
+
|
| 22 |
+
super().__init__(**kwargs)
|
| 23 |
+
|
| 24 |
+
class MLPProjectorConfig(PretrainedConfig):
|
| 25 |
+
model_type = "mlp2x_projector"
|
| 26 |
+
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
hidden_act="gelu",
|
| 30 |
+
in_hidden_size=1024,
|
| 31 |
+
out_hidden_size=2048,
|
| 32 |
+
bias: bool=True,
|
| 33 |
+
**kwargs
|
| 34 |
+
):
|
| 35 |
+
self.hidden_act = hidden_act
|
| 36 |
+
self.in_hidden_size = in_hidden_size
|
| 37 |
+
self.out_hidden_size = out_hidden_size
|
| 38 |
+
self.bias = bias
|
| 39 |
+
|
| 40 |
+
super().__init__(**kwargs)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class AX4VLConfig(PretrainedConfig):
|
| 45 |
+
model_type = "a.x-4-vl"
|
| 46 |
+
sub_configs = {
|
| 47 |
+
"text_config": AutoConfig,
|
| 48 |
+
"projector_config": AutoConfig,
|
| 49 |
+
"vision_config": AutoConfig
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
vision_config=None,
|
| 55 |
+
projector_config=None,
|
| 56 |
+
text_config=None,
|
| 57 |
+
image_token_index=102400,
|
| 58 |
+
vision_feature_select_strategy="full",
|
| 59 |
+
vision_feature_layer=0,
|
| 60 |
+
tie_word_embeddings=False,
|
| 61 |
+
**kwargs,
|
| 62 |
+
):
|
| 63 |
+
self.image_token_index = image_token_index
|
| 64 |
+
|
| 65 |
+
if vision_feature_select_strategy not in ["default", "full"]:
|
| 66 |
+
raise ValueError(
|
| 67 |
+
"vision_feature_select_strategy should be one of 'default', 'full'."
|
| 68 |
+
f"Got: {vision_feature_select_strategy}"
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
| 72 |
+
self.vision_feature_layer = vision_feature_layer
|
| 73 |
+
|
| 74 |
+
if isinstance(vision_config, dict):
|
| 75 |
+
vision_config["model_type"] = (
|
| 76 |
+
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
|
| 77 |
+
)
|
| 78 |
+
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
|
| 79 |
+
elif vision_config is None:
|
| 80 |
+
vision_config = CONFIG_MAPPING["siglip_vision_model"](
|
| 81 |
+
intermediate_size=4304,
|
| 82 |
+
hidden_size=1152,
|
| 83 |
+
patch_size=16,
|
| 84 |
+
image_size=384,
|
| 85 |
+
num_hidden_layers=27,
|
| 86 |
+
num_attention_heads=16,
|
| 87 |
+
vision_use_head=False
|
| 88 |
+
)
|
| 89 |
+
self.vision_config = vision_config
|
| 90 |
+
|
| 91 |
+
if isinstance(projector_config, dict):
|
| 92 |
+
projector_config["model_type"] = (
|
| 93 |
+
projector_config["model_type"] if "model_type" in projector_config else "mlp2x"
|
| 94 |
+
)
|
| 95 |
+
projector_config = CONFIG_MAPPING[projector_config["model_type"]](**projector_config)
|
| 96 |
+
elif projector_config is None:
|
| 97 |
+
projector_config = CONFIG_MAPPING["mlp2x_projector"]()
|
| 98 |
+
self.projector_config = projector_config
|
| 99 |
+
|
| 100 |
+
if isinstance(text_config, dict):
|
| 101 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2"
|
| 102 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
| 103 |
+
elif text_config is None:
|
| 104 |
+
text_config = CONFIG_MAPPING["qwen2"]()
|
| 105 |
+
|
| 106 |
+
self.text_config = text_config
|
| 107 |
+
|
| 108 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
AutoConfig.register(LDPConfig.model_type, LDPConfig)
|
| 112 |
+
AutoConfig.register(MLPProjectorConfig.model_type, MLPProjectorConfig)
|
| 113 |
+
AutoConfig.register(AX4VLConfig.model_type, AX4VLConfig)
|
generation_config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 0,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
0,
|
| 6 |
+
27,
|
| 7 |
+
1
|
| 8 |
+
],
|
| 9 |
+
"pad_token_id": 1,
|
| 10 |
+
"transformers_version": "4.49.0",
|
| 11 |
+
"use_cache": false
|
| 12 |
+
}
|
image_processing_ax4vl.py
ADDED
|
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Image processor class for Megatron-LM LLaVA.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
from typing import Dict, Iterable, List, Optional, Tuple, Union
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from .configuration_ax4vl import AX4VLConfig
|
| 11 |
+
|
| 12 |
+
from transformers.image_utils import (
|
| 13 |
+
OPENAI_CLIP_MEAN,
|
| 14 |
+
OPENAI_CLIP_STD,
|
| 15 |
+
ChannelDimension,
|
| 16 |
+
ImageInput,
|
| 17 |
+
PILImageResampling,
|
| 18 |
+
infer_channel_dimension_format,
|
| 19 |
+
is_scaled_image,
|
| 20 |
+
is_valid_image,
|
| 21 |
+
valid_images,
|
| 22 |
+
make_list_of_images,
|
| 23 |
+
to_numpy_array,
|
| 24 |
+
validate_preprocess_arguments,
|
| 25 |
+
)
|
| 26 |
+
from transformers.image_processing_utils import BatchFeature, get_size_dict, BaseImageProcessor
|
| 27 |
+
from transformers.image_transforms import (
|
| 28 |
+
PaddingMode,
|
| 29 |
+
pad,
|
| 30 |
+
to_channel_dimension_format,
|
| 31 |
+
)
|
| 32 |
+
from transformers.utils import TensorType, logging
|
| 33 |
+
from transformers.models.auto import AutoImageProcessor
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
logger = logging.get_logger(__name__)
|
| 37 |
+
|
| 38 |
+
def _get_patch_output_size(image, target_resolution):
|
| 39 |
+
original_width, original_height = image.size
|
| 40 |
+
target_width, target_height = target_resolution
|
| 41 |
+
|
| 42 |
+
scale_w = target_width / original_width
|
| 43 |
+
scale_h = target_height / original_height
|
| 44 |
+
|
| 45 |
+
if scale_w < scale_h:
|
| 46 |
+
new_width = target_width
|
| 47 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
| 48 |
+
else:
|
| 49 |
+
new_height = target_height
|
| 50 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
| 51 |
+
|
| 52 |
+
return new_width, new_height
|
| 53 |
+
|
| 54 |
+
# From https://github.com/OpenGVLab/InternVL/blob/c62fa4f7c850165d7386bdc48ac6bc5a6fab0864/internvl_chat/internvl/train/dataset.py#L685
|
| 55 |
+
# Copyright (c) 2023 OpenGVLab.
|
| 56 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 57 |
+
best_ratio_diff = float('inf')
|
| 58 |
+
best_ratio = (1, 1)
|
| 59 |
+
area = width * height
|
| 60 |
+
for ratio in target_ratios:
|
| 61 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 62 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 63 |
+
if ratio_diff < best_ratio_diff:
|
| 64 |
+
best_ratio_diff = ratio_diff
|
| 65 |
+
best_ratio = ratio
|
| 66 |
+
elif ratio_diff == best_ratio_diff:
|
| 67 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 68 |
+
best_ratio = ratio
|
| 69 |
+
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
| 70 |
+
return best_ratio
|
| 71 |
+
|
| 72 |
+
def _pad_for_patching(image, target_resolution, background_color=(0, 0, 0)):
|
| 73 |
+
"""
|
| 74 |
+
Pad an image to a target resolution while maintaining aspect ratio.
|
| 75 |
+
"""
|
| 76 |
+
target_width, target_height = target_resolution
|
| 77 |
+
new_width, new_height = _get_patch_output_size(image, target_resolution)
|
| 78 |
+
|
| 79 |
+
paste_x = (target_width - new_width) // 2
|
| 80 |
+
paste_y = (target_height - new_height) // 2
|
| 81 |
+
|
| 82 |
+
padded_image = Image.new(image.mode, target_resolution, background_color)
|
| 83 |
+
padded_image.paste(image, (paste_x, paste_y))
|
| 84 |
+
return padded_image
|
| 85 |
+
|
| 86 |
+
def _resize_for_patching(image, target_resolution):
|
| 87 |
+
new_size = _get_patch_output_size(image, target_resolution)
|
| 88 |
+
|
| 89 |
+
# Resize the image
|
| 90 |
+
resized_image = image.resize(new_size)
|
| 91 |
+
|
| 92 |
+
return resized_image
|
| 93 |
+
|
| 94 |
+
def get_target_ratios(image_size, min_num=1, max_num=6, tile_size=384):
|
| 95 |
+
orig_width, orig_height = image_size
|
| 96 |
+
aspect_ratio = orig_width / orig_height
|
| 97 |
+
|
| 98 |
+
target_ratios = set(
|
| 99 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
| 100 |
+
i * j <= max_num and i * j >= min_num)
|
| 101 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 102 |
+
|
| 103 |
+
return find_closest_aspect_ratio(
|
| 104 |
+
aspect_ratio, target_ratios, orig_width, orig_height, tile_size
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# From https://github.com/OpenGVLab/InternVL/blob/c62fa4f7c850165d7386bdc48ac6bc5a6fab0864/internvl_chat/internvl/train/dataset.py#L702
|
| 108 |
+
# Copyright (c) 2023 OpenGVLab.
|
| 109 |
+
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, padding=False):
|
| 110 |
+
# find the closest aspect ratio to the target
|
| 111 |
+
target_aspect_ratio = get_target_ratios(image.size, min_num=min_num, max_num=max_num, tile_size=image_size)
|
| 112 |
+
|
| 113 |
+
# calculate the target width and height
|
| 114 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 115 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 116 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 117 |
+
|
| 118 |
+
# resize the image
|
| 119 |
+
if padding: # LLaVA-Next tiling strategy
|
| 120 |
+
resized_img = _resize_for_patching(image, (target_width, target_height))
|
| 121 |
+
resized_img = _pad_for_patching(resized_img, (target_width, target_height))
|
| 122 |
+
else: # InternVL tiling strategy
|
| 123 |
+
resized_img = image.resize((target_width, target_height))
|
| 124 |
+
processed_images = []
|
| 125 |
+
for i in range(blocks):
|
| 126 |
+
box = (
|
| 127 |
+
(i % (target_width // image_size)) * image_size,
|
| 128 |
+
(i // (target_width // image_size)) * image_size,
|
| 129 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
| 130 |
+
((i // (target_width // image_size)) + 1) * image_size
|
| 131 |
+
)
|
| 132 |
+
# split the image
|
| 133 |
+
split_img = resized_img.crop(box)
|
| 134 |
+
processed_images.append(split_img)
|
| 135 |
+
assert len(processed_images) == blocks
|
| 136 |
+
if use_thumbnail and len(processed_images) != 1:
|
| 137 |
+
thumbnail_img = image.resize((image_size, image_size))
|
| 138 |
+
processed_images.append(thumbnail_img)
|
| 139 |
+
return processed_images
|
| 140 |
+
|
| 141 |
+
class AX4VLImageProcessor(BaseImageProcessor):
|
| 142 |
+
|
| 143 |
+
model_input_names = ["pixel_values"]
|
| 144 |
+
|
| 145 |
+
def __init__(
|
| 146 |
+
self,
|
| 147 |
+
do_resize: bool = True,
|
| 148 |
+
size: Dict[str, int] = None,
|
| 149 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 150 |
+
do_rescale: bool = True,
|
| 151 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 152 |
+
do_normalize: bool = True,
|
| 153 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 154 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 155 |
+
do_pad: Optional[bool] = True,
|
| 156 |
+
do_tile_pad: Optional[bool] = True,
|
| 157 |
+
do_convert_rgb: bool = True,
|
| 158 |
+
use_thumbnail: bool = True,
|
| 159 |
+
min_num_tiles: int = 1,
|
| 160 |
+
max_num_tiles: int = 6,
|
| 161 |
+
**kwargs,
|
| 162 |
+
) -> None:
|
| 163 |
+
super().__init__(**kwargs)
|
| 164 |
+
size = dict(size) if size is not None else {"shortest_edge": 224}
|
| 165 |
+
size = get_size_dict(size, default_to_square=False)
|
| 166 |
+
|
| 167 |
+
self.do_resize = do_resize
|
| 168 |
+
self.size = size
|
| 169 |
+
self.resample = resample
|
| 170 |
+
self.do_rescale = do_rescale
|
| 171 |
+
self.rescale_factor = rescale_factor
|
| 172 |
+
self.do_normalize = do_normalize
|
| 173 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 174 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 175 |
+
self.do_pad = do_pad
|
| 176 |
+
self.do_tile_pad = do_tile_pad
|
| 177 |
+
self.do_convert_rgb = do_convert_rgb
|
| 178 |
+
self.use_thumbnail = use_thumbnail
|
| 179 |
+
self.min_num_tiles = min_num_tiles
|
| 180 |
+
self.max_num_tiles = max_num_tiles
|
| 181 |
+
|
| 182 |
+
def pad(
|
| 183 |
+
self,
|
| 184 |
+
image: np.ndarray,
|
| 185 |
+
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
|
| 186 |
+
mode: PaddingMode = PaddingMode.CONSTANT,
|
| 187 |
+
constant_values: Union[float, Iterable[float]] = 0.0,
|
| 188 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 189 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 190 |
+
) -> np.ndarray:
|
| 191 |
+
"""
|
| 192 |
+
Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`)
|
| 193 |
+
dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected
|
| 194 |
+
as input.
|
| 195 |
+
|
| 196 |
+
Args:
|
| 197 |
+
image (`np.ndarray`):
|
| 198 |
+
The image to pad.
|
| 199 |
+
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
|
| 200 |
+
Padding to apply to the edges of the height, width axes. Can be one of three formats:
|
| 201 |
+
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
|
| 202 |
+
- `((before, after),)` yields same before and after pad for height and width.
|
| 203 |
+
- `(pad,)` or int is a shortcut for before = after = pad width for all axes.
|
| 204 |
+
mode (`PaddingMode`):
|
| 205 |
+
The padding mode to use. Can be one of:
|
| 206 |
+
- `"constant"`: pads with a constant value.
|
| 207 |
+
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
|
| 208 |
+
vector along each axis.
|
| 209 |
+
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
|
| 210 |
+
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
|
| 211 |
+
constant_values (`float` or `Iterable[float]`, *optional*):
|
| 212 |
+
The value to use for the padding if `mode` is `"constant"`.
|
| 213 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
| 214 |
+
The channel dimension format for the output image. Can be one of:
|
| 215 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 216 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 217 |
+
If unset, will use same as the input image.
|
| 218 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
| 219 |
+
The channel dimension format for the input image. Can be one of:
|
| 220 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 221 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 222 |
+
If unset, will use the inferred format of the input image.
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
`np.ndarray`: The padded image.
|
| 226 |
+
|
| 227 |
+
"""
|
| 228 |
+
|
| 229 |
+
# call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
|
| 230 |
+
if isinstance(padding, int) or len(padding) != 4:
|
| 231 |
+
return pad(image, padding, mode, constant_values, data_format, input_data_format)
|
| 232 |
+
|
| 233 |
+
if input_data_format is None:
|
| 234 |
+
input_data_format = infer_channel_dimension_format(image)
|
| 235 |
+
if mode == PaddingMode.CONSTANT:
|
| 236 |
+
image = np.pad(image, padding, mode="constant", constant_values=constant_values)
|
| 237 |
+
elif mode == PaddingMode.REFLECT:
|
| 238 |
+
image = np.pad(image, padding, mode="reflect")
|
| 239 |
+
elif mode == PaddingMode.REPLICATE:
|
| 240 |
+
image = np.pad(image, padding, mode="edge")
|
| 241 |
+
elif mode == PaddingMode.SYMMETRIC:
|
| 242 |
+
image = np.pad(image, padding, mode="symmetric")
|
| 243 |
+
else:
|
| 244 |
+
raise ValueError(f"Invalid padding mode: {mode}")
|
| 245 |
+
image = (
|
| 246 |
+
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
|
| 247 |
+
)
|
| 248 |
+
return image
|
| 249 |
+
|
| 250 |
+
def _pad_for_batching(
|
| 251 |
+
self,
|
| 252 |
+
pixel_values: List[np.ndarray],
|
| 253 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 254 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 255 |
+
):
|
| 256 |
+
"""
|
| 257 |
+
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
|
| 258 |
+
|
| 259 |
+
Args:
|
| 260 |
+
pixel_values (`List[np.ndarray]`):
|
| 261 |
+
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
|
| 262 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
| 263 |
+
The channel dimension format for the output image. Can be one of:
|
| 264 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 265 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 266 |
+
If unset, will use same as the input image.
|
| 267 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
| 268 |
+
The channel dimension format for the input image. Can be one of:
|
| 269 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 270 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 271 |
+
If unset, will use the inferred format of the input image.
|
| 272 |
+
|
| 273 |
+
Returns:
|
| 274 |
+
List[`np.ndarray`]: The padded images.
|
| 275 |
+
"""
|
| 276 |
+
max_patch = max(len(x) for x in pixel_values)
|
| 277 |
+
pixel_values = [
|
| 278 |
+
self.pad(
|
| 279 |
+
image,
|
| 280 |
+
padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)),
|
| 281 |
+
data_format=data_format,
|
| 282 |
+
input_data_format=input_data_format,
|
| 283 |
+
)
|
| 284 |
+
for image in pixel_values
|
| 285 |
+
]
|
| 286 |
+
|
| 287 |
+
return pixel_values
|
| 288 |
+
|
| 289 |
+
def _preprocess(
|
| 290 |
+
self,
|
| 291 |
+
images: ImageInput,
|
| 292 |
+
do_resize: bool = None,
|
| 293 |
+
size: Dict[str, int] = None,
|
| 294 |
+
resample: PILImageResampling = None,
|
| 295 |
+
do_rescale: bool = None,
|
| 296 |
+
rescale_factor: float = None,
|
| 297 |
+
do_normalize: bool = None,
|
| 298 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 299 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 300 |
+
do_convert_rgb: bool = None,
|
| 301 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 302 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 303 |
+
):
|
| 304 |
+
images = make_list_of_images(images)
|
| 305 |
+
|
| 306 |
+
all_images = []
|
| 307 |
+
for image in images:
|
| 308 |
+
if do_resize:
|
| 309 |
+
image = image.resize((size["shortest_edge"], size["shortest_edge"]), resample)
|
| 310 |
+
|
| 311 |
+
image = to_numpy_array(image)
|
| 312 |
+
|
| 313 |
+
if input_data_format is None:
|
| 314 |
+
# We assume that all images have the same channel dimension format.
|
| 315 |
+
input_data_format = infer_channel_dimension_format(image)
|
| 316 |
+
|
| 317 |
+
if is_scaled_image(image) and do_rescale:
|
| 318 |
+
logger.warning_once(
|
| 319 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 320 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 321 |
+
)
|
| 322 |
+
if do_rescale:
|
| 323 |
+
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
| 324 |
+
|
| 325 |
+
if do_normalize:
|
| 326 |
+
image = self.normalize(
|
| 327 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
all_images.append(image)
|
| 331 |
+
|
| 332 |
+
images = [
|
| 333 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
| 334 |
+
for image in all_images
|
| 335 |
+
]
|
| 336 |
+
|
| 337 |
+
return images
|
| 338 |
+
|
| 339 |
+
def preprocess(
|
| 340 |
+
self,
|
| 341 |
+
images: ImageInput,
|
| 342 |
+
do_resize: bool = None,
|
| 343 |
+
size: Dict[str, int] = None,
|
| 344 |
+
resample: PILImageResampling = None,
|
| 345 |
+
do_rescale: bool = None,
|
| 346 |
+
rescale_factor: float = None,
|
| 347 |
+
do_normalize: bool = None,
|
| 348 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 349 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 350 |
+
do_pad: Optional[bool] = None,
|
| 351 |
+
do_convert_rgb: bool = None,
|
| 352 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 353 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 354 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 355 |
+
):
|
| 356 |
+
"""
|
| 357 |
+
Args:
|
| 358 |
+
images (`ImageInput`):
|
| 359 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255.
|
| 360 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 361 |
+
Whether to resize the image.
|
| 362 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 363 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
| 364 |
+
the longest edge resized to keep the input aspect ratio.
|
| 365 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 366 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 367 |
+
has an effect if `do_resize` is set to `True`.
|
| 368 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 369 |
+
Whether to normalize the image.
|
| 370 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 371 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 372 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 373 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 374 |
+
`True`.
|
| 375 |
+
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
|
| 376 |
+
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
|
| 377 |
+
number of patches in the batch. Padding will be applied to the bottom and right with zeros.
|
| 378 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 379 |
+
Whether to convert the image to RGB.
|
| 380 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 381 |
+
The type of tensors to return. Can be one of:
|
| 382 |
+
- Unset: Return a list of `np.ndarray`.
|
| 383 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 384 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 385 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 386 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 387 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 388 |
+
The channel dimension format for the output image. Can be one of:
|
| 389 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 390 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 391 |
+
- Unset: Use the channel dimension format of the input image.
|
| 392 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 393 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 394 |
+
from the input image. Can be one of:
|
| 395 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 396 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 397 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 398 |
+
|
| 399 |
+
"""
|
| 400 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 401 |
+
size = size if size is not None else self.size
|
| 402 |
+
size = get_size_dict(size, param_name="size", default_to_square=False)
|
| 403 |
+
resample = resample if resample is not None else self.resample
|
| 404 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 405 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 406 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 407 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 408 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 409 |
+
do_pad = do_pad if do_pad is not None else self.do_pad
|
| 410 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 411 |
+
|
| 412 |
+
images = make_batched_images(images)
|
| 413 |
+
|
| 414 |
+
if not valid_images(images):
|
| 415 |
+
raise ValueError(
|
| 416 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 417 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
validate_preprocess_arguments(
|
| 421 |
+
do_rescale=do_rescale,
|
| 422 |
+
rescale_factor=rescale_factor,
|
| 423 |
+
do_normalize=do_normalize,
|
| 424 |
+
image_mean=image_mean,
|
| 425 |
+
image_std=image_std,
|
| 426 |
+
do_resize=do_resize,
|
| 427 |
+
size=size,
|
| 428 |
+
resample=resample,
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
new_images, num_tiles = [], []
|
| 432 |
+
image_sizes = [image.size for image in images]
|
| 433 |
+
for image in images:
|
| 434 |
+
if do_convert_rgb and image.mode != "RGB":
|
| 435 |
+
image = image.convert("RGB")
|
| 436 |
+
|
| 437 |
+
image_patches = dynamic_preprocess(
|
| 438 |
+
image,
|
| 439 |
+
min_num=self.min_num_tiles,
|
| 440 |
+
max_num=self.max_num_tiles,
|
| 441 |
+
image_size=self.size["shortest_edge"],
|
| 442 |
+
use_thumbnail=self.use_thumbnail,
|
| 443 |
+
padding=self.do_tile_pad
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
# preprocess patches
|
| 447 |
+
pixel_values = self._preprocess(
|
| 448 |
+
image_patches,
|
| 449 |
+
do_resize=do_resize,
|
| 450 |
+
size=size,
|
| 451 |
+
resample=resample,
|
| 452 |
+
do_rescale=do_rescale,
|
| 453 |
+
rescale_factor=rescale_factor,
|
| 454 |
+
do_normalize=do_normalize,
|
| 455 |
+
image_mean=image_mean,
|
| 456 |
+
image_std=image_std,
|
| 457 |
+
data_format=data_format,
|
| 458 |
+
input_data_format=input_data_format
|
| 459 |
+
)
|
| 460 |
+
pixel_values = np.array(pixel_values)
|
| 461 |
+
new_images.append(pixel_values)
|
| 462 |
+
num_tiles.append(len(image_patches))
|
| 463 |
+
|
| 464 |
+
if do_pad:
|
| 465 |
+
processed_images = self._pad_for_batching(new_images)
|
| 466 |
+
else:
|
| 467 |
+
processed_images = np.concatenate(new_images)
|
| 468 |
+
|
| 469 |
+
return BatchFeature(
|
| 470 |
+
data={"pixel_values": processed_images, "image_sizes": image_sizes, "num_tiles": num_tiles},
|
| 471 |
+
tensor_type=return_tensors
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
| 476 |
+
"""
|
| 477 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
| 478 |
+
|
| 479 |
+
Args:
|
| 480 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
| 481 |
+
The input image.
|
| 482 |
+
|
| 483 |
+
Returns:
|
| 484 |
+
list: A list of images.
|
| 485 |
+
"""
|
| 486 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
| 487 |
+
return [img for img_list in images for img in img_list]
|
| 488 |
+
|
| 489 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
| 490 |
+
return images
|
| 491 |
+
|
| 492 |
+
elif is_valid_image(images):
|
| 493 |
+
return [images]
|
| 494 |
+
|
| 495 |
+
raise ValueError(f"Could not make batched video from {images}")
|
| 496 |
+
|
| 497 |
+
AutoImageProcessor.register(AX4VLConfig, AX4VLImageProcessor)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df2cb01ffd10ce08ecc0bc65bf7574b9b6307255d08223f1f9bb293be670f354
|
| 3 |
+
size 4915685072
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33edd933eba6633abf140bb94f5e2f1b6632cf936a790f58400d07ec2df8b602
|
| 3 |
+
size 4932752832
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d092fc7551ec532351529e9e9f7df911e5748bfbe4083b17114848ddae75194
|
| 3 |
+
size 4796984024
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6263e4575c902f940b9c52a36144a748ba46d92ae0cbfca5689d110594184372
|
| 3 |
+
size 734003344
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 15379320288
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"language_model.lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 14 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 29 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 31 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"language_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 38 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"language_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"language_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"language_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"language_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"language_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"language_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 62 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"language_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"language_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"language_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 74 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"language_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 77 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"language_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 79 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"language_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"language_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"language_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"language_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 98 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"language_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 101 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"language_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 103 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"language_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"language_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 113 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"language_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 117 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 118 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 121 |
+
"language_model.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 122 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 123 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"language_model.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 125 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"language_model.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 127 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 128 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"language_model.model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 134 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"language_model.model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 137 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"language_model.model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 139 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"language_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 146 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"language_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 149 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"language_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 153 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"language_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 158 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"language_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 161 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"language_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 163 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"language_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"language_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 173 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"language_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 175 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"language_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"language_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 185 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"language_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 187 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"language_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 194 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"language_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"language_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"language_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"language_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"language_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 211 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"language_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"language_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"language_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"language_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 230 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"language_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"language_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"language_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"language_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"language_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 249 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 251 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"language_model.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 254 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 255 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"language_model.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 257 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"language_model.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 259 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 260 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"language_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 266 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"language_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 269 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"language_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 271 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"language_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 278 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"language_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 281 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"language_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 283 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 289 |
+
"language_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 290 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"language_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 293 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"language_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 295 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"language_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 302 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 303 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 304 |
+
"language_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 305 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 306 |
+
"language_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 307 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 308 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 309 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 310 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 311 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 312 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 313 |
+
"language_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 314 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 316 |
+
"language_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 317 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 318 |
+
"language_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 319 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 320 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 321 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"language_model.model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 326 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 327 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 328 |
+
"language_model.model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 329 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 330 |
+
"language_model.model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 331 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 332 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 333 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"language_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 338 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"language_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 341 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 342 |
+
"language_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 343 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"language_model.model.norm.weight": "model-00003-of-00004.safetensors",
|
| 345 |
+
"multi_modal_projector.mlp.mlp.0.bias": "model-00001-of-00004.safetensors",
|
| 346 |
+
"multi_modal_projector.mlp.mlp.0.weight": "model-00001-of-00004.safetensors",
|
| 347 |
+
"multi_modal_projector.mlp.mlp.2.bias": "model-00001-of-00004.safetensors",
|
| 348 |
+
"multi_modal_projector.mlp.mlp.2.weight": "model-00001-of-00004.safetensors",
|
| 349 |
+
"multi_modal_projector.peg.peg.0.bias": "model-00001-of-00004.safetensors",
|
| 350 |
+
"multi_modal_projector.peg.peg.0.weight": "model-00001-of-00004.safetensors",
|
| 351 |
+
"vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
|
| 352 |
+
"vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
|
| 353 |
+
"vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00004.safetensors",
|
| 354 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 355 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 356 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 357 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 358 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 359 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 360 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 361 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 362 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 363 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 364 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 365 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 366 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 367 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 368 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 369 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 370 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 371 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 372 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 373 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 374 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 375 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 376 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 377 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 378 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 379 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 380 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 381 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 382 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 383 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 384 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 385 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 386 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 387 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 388 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 389 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 390 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 391 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 392 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 393 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 394 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 395 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 396 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 397 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 398 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 399 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 400 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 401 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 402 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 403 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 404 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 405 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 406 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 407 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 408 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 409 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 410 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 411 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 412 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 413 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 414 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 415 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 416 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 417 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 418 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 419 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 420 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 421 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 422 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 423 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 424 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 425 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 426 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 427 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 428 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 429 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 430 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 431 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 432 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 433 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 434 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 435 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 436 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 437 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 438 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 439 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 440 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 441 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 442 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 443 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 444 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 445 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 446 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 447 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 448 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 449 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 450 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 451 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 452 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 453 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 454 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 455 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 456 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 457 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 458 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 459 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 460 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 461 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 462 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 463 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 464 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 465 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 466 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 467 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 468 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 469 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 470 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 471 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 472 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 473 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 474 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 475 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 476 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 477 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 478 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 479 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 480 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 481 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 482 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 483 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 484 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 485 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 486 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 487 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 488 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 489 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 490 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 491 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 492 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 493 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 494 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 495 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 496 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 497 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 498 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 499 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 500 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 501 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 502 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 503 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 504 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 505 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 506 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 507 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 508 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 509 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 510 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 511 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 512 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 513 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 514 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 515 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 516 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 517 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 518 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 519 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 520 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 521 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 522 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 523 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 524 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 525 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 526 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 527 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 528 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 529 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 530 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 531 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 532 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 533 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 534 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 535 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 536 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 537 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 538 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 539 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 540 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 541 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 542 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 543 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 544 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 545 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 546 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 547 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 548 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 549 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 550 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 551 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 552 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 553 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 554 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 555 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 556 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 557 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 558 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 559 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 560 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 561 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 562 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 563 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 564 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 565 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 566 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 567 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 568 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 569 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 570 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 571 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 572 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 573 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 574 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 575 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 576 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 577 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 578 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 579 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 580 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 581 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 582 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 583 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 584 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 585 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 586 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 587 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 588 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 589 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 590 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 591 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 592 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 593 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 594 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 595 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 596 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 597 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 598 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 599 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 600 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 601 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 602 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 603 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 604 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 605 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 606 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 607 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 608 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 609 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 610 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 611 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 612 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 613 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 614 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 615 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 616 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 617 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 618 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 619 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 620 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 621 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 622 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 623 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 624 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 625 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 626 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 627 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 628 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 629 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 630 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 631 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 632 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 633 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 634 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 635 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 636 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 637 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 638 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 639 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 640 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 641 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 642 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 643 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 644 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 645 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 646 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 647 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 648 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 649 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 650 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 651 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 652 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 653 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 654 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 655 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 656 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 657 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 658 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 659 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 660 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 661 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 662 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 663 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 664 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 665 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 666 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 667 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 668 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 669 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 670 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 671 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 672 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 673 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 674 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 675 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 676 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 677 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 678 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 679 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 680 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 681 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 682 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 683 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 684 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 685 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 686 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 687 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 688 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 689 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 690 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 691 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 692 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 693 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 694 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 695 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 696 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 697 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 698 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 699 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 700 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 701 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 702 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 703 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 704 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 705 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 706 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 707 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 708 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 709 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 710 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 711 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 712 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 713 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 714 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 715 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 716 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 717 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 718 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 719 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 720 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 721 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 722 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 723 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 724 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 725 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 726 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 727 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 728 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 729 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 730 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 731 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 732 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 733 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 734 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 735 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 736 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 737 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 738 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 739 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 740 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 741 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 742 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 743 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 744 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 745 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 746 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 747 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 748 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 749 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 750 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 751 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 752 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 753 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 754 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 755 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 756 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 757 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 758 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 759 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 760 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 761 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 762 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 763 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 764 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 765 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 766 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 767 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 768 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 769 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 770 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 771 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 772 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 773 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 774 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 775 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 776 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 777 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 778 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 779 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 780 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 781 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 782 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 783 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 784 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 785 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 786 |
+
"vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 787 |
+
"vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00004.safetensors"
|
| 788 |
+
}
|
| 789 |
+
}
|
modeling_ax4vl.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
base code: LLaVA-Next (transformers==4.49.0)
|
| 3 |
+
"""
|
| 4 |
+
from typing import List, Optional, Tuple, Union
|
| 5 |
+
import math
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.utils.checkpoint
|
| 9 |
+
from torch import nn
|
| 10 |
+
from .configuration_ax4vl import LDPConfig, MLPProjectorConfig, AX4VLConfig
|
| 11 |
+
|
| 12 |
+
from transformers.activations import ACT2FN
|
| 13 |
+
from transformers.generation import GenerationMixin
|
| 14 |
+
from transformers.models.auto import AutoModel, AutoModelForCausalLM
|
| 15 |
+
from transformers.utils import (
|
| 16 |
+
is_torchdynamo_compiling,
|
| 17 |
+
logging,
|
| 18 |
+
)
|
| 19 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 20 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 21 |
+
from transformers.modeling_outputs import ModelOutput
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
def build_projector(config):
|
| 29 |
+
if config.model_type == "ldpnetv2_projector":
|
| 30 |
+
return LDPProjector(config)
|
| 31 |
+
else:
|
| 32 |
+
raise ValueError(f"Unknown projector type: {config.model_type}")
|
| 33 |
+
|
| 34 |
+
@dataclass
|
| 35 |
+
class AX4CausalLMOutputWithPast(ModelOutput):
|
| 36 |
+
loss: Optional[torch.FloatTensor] = None
|
| 37 |
+
logits: torch.FloatTensor = None
|
| 38 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
| 39 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 40 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 41 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class BaseAXPretrainedModel(PreTrainedModel):
|
| 45 |
+
config_class = PretrainedConfig
|
| 46 |
+
base_model_prefix = "model"
|
| 47 |
+
supports_gradient_checkpointing = True
|
| 48 |
+
_no_split_modules = ["AXVisionAttention"]
|
| 49 |
+
_skip_keys_device_placement = "past_key_values"
|
| 50 |
+
_supports_cache_class = True
|
| 51 |
+
_supports_flash_attn_2 = True
|
| 52 |
+
_supports_sdpa = True
|
| 53 |
+
_supports_quantized_cache = True
|
| 54 |
+
_supports_static_cache = True
|
| 55 |
+
|
| 56 |
+
def __init__(self, config: PretrainedConfig):
|
| 57 |
+
super().__init__(config)
|
| 58 |
+
|
| 59 |
+
def _init_weights(self, module):
|
| 60 |
+
# important: this ported version of LlavaNext isn't meant for training from scratch - only
|
| 61 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
| 62 |
+
# https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose
|
| 63 |
+
std = (
|
| 64 |
+
self.config.initializer_range
|
| 65 |
+
if hasattr(self.config, "initializer_range")
|
| 66 |
+
else self.config.text_config.initializer_range
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
if hasattr(module, "class_embedding"):
|
| 70 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
| 71 |
+
|
| 72 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 73 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 74 |
+
if module.bias is not None:
|
| 75 |
+
module.bias.data.zero_()
|
| 76 |
+
elif isinstance(module, nn.Embedding):
|
| 77 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 78 |
+
if module.padding_idx is not None:
|
| 79 |
+
module.weight.data[module.padding_idx].zero_()
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class AX4VLForConditionalGeneration(BaseAXPretrainedModel, GenerationMixin):
|
| 84 |
+
config_class = AX4VLConfig
|
| 85 |
+
|
| 86 |
+
def __init__(self, config: AX4VLConfig):
|
| 87 |
+
super().__init__(config)
|
| 88 |
+
self.vision_tower = AutoModel.from_config(config.vision_config)
|
| 89 |
+
|
| 90 |
+
self.multi_modal_projector = build_projector(config.projector_config)
|
| 91 |
+
self.vocab_size = config.text_config.vocab_size
|
| 92 |
+
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
|
| 93 |
+
if self.language_model._tied_weights_keys is not None:
|
| 94 |
+
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
|
| 95 |
+
|
| 96 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
| 97 |
+
self.post_init()
|
| 98 |
+
|
| 99 |
+
def get_input_embeddings(self):
|
| 100 |
+
return self.language_model.get_input_embeddings()
|
| 101 |
+
|
| 102 |
+
def set_input_embeddings(self, value):
|
| 103 |
+
self.language_model.set_input_embeddings(value)
|
| 104 |
+
|
| 105 |
+
def get_output_embeddings(self):
|
| 106 |
+
return self.language_model.get_output_embeddings()
|
| 107 |
+
|
| 108 |
+
def set_output_embeddings(self, new_embeddings):
|
| 109 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
| 110 |
+
|
| 111 |
+
def set_decoder(self, decoder):
|
| 112 |
+
self.language_model.set_decoder(decoder)
|
| 113 |
+
|
| 114 |
+
def get_decoder(self):
|
| 115 |
+
return self.language_model.get_decoder()
|
| 116 |
+
|
| 117 |
+
def get_image_features(
|
| 118 |
+
self,
|
| 119 |
+
pixel_values: torch.FloatTensor,
|
| 120 |
+
vision_feature_layer: Union[int, List[int]],
|
| 121 |
+
vision_feature_select_strategy: str,
|
| 122 |
+
):
|
| 123 |
+
if pixel_values.dim() != 4:
|
| 124 |
+
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
|
| 125 |
+
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
|
| 126 |
+
|
| 127 |
+
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
| 128 |
+
# If we have one vision feature layer, return the corresponding hidden states,
|
| 129 |
+
# otherwise, select the hidden states of each feature layer and concatenate them
|
| 130 |
+
if isinstance(vision_feature_layer, int):
|
| 131 |
+
if vision_feature_layer == 0:
|
| 132 |
+
selected_image_feature = image_outputs.last_hidden_state
|
| 133 |
+
else:
|
| 134 |
+
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
|
| 135 |
+
else:
|
| 136 |
+
hs_pool = [image_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
|
| 137 |
+
selected_image_feature = torch.cat(hs_pool, dim=-1)
|
| 138 |
+
|
| 139 |
+
if vision_feature_select_strategy == "default":
|
| 140 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
| 141 |
+
elif vision_feature_select_strategy == "full":
|
| 142 |
+
selected_image_feature = selected_image_feature
|
| 143 |
+
|
| 144 |
+
image_features = self.multi_modal_projector(selected_image_feature)
|
| 145 |
+
return image_features
|
| 146 |
+
|
| 147 |
+
def forward(
|
| 148 |
+
self,
|
| 149 |
+
input_ids: torch.LongTensor = None,
|
| 150 |
+
pixel_values: torch.FloatTensor = None,
|
| 151 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 152 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 153 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 154 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 155 |
+
vision_feature_layer: Optional[Union[int, List[int]]] = None,
|
| 156 |
+
vision_feature_select_strategy: Optional[str] = None,
|
| 157 |
+
labels: Optional[torch.LongTensor] = None,
|
| 158 |
+
use_cache: Optional[bool] = None,
|
| 159 |
+
output_attentions: Optional[bool] = None,
|
| 160 |
+
output_hidden_states: Optional[bool] = None,
|
| 161 |
+
return_dict: Optional[bool] = None,
|
| 162 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 163 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 164 |
+
**lm_kwargs,
|
| 165 |
+
) -> Union[Tuple, AX4CausalLMOutputWithPast]:
|
| 166 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 167 |
+
output_hidden_states = (
|
| 168 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 169 |
+
)
|
| 170 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 171 |
+
vision_feature_layer = (
|
| 172 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
| 173 |
+
)
|
| 174 |
+
vision_feature_select_strategy = (
|
| 175 |
+
vision_feature_select_strategy
|
| 176 |
+
if vision_feature_select_strategy is not None
|
| 177 |
+
else self.config.vision_feature_select_strategy
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 181 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 182 |
+
|
| 183 |
+
if pixel_values is not None and inputs_embeds is not None:
|
| 184 |
+
raise ValueError(
|
| 185 |
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
if inputs_embeds is None:
|
| 189 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 190 |
+
|
| 191 |
+
if pixel_values is not None and pixel_values.size(0) > 0:
|
| 192 |
+
image_features = self.get_image_features(
|
| 193 |
+
pixel_values,
|
| 194 |
+
vision_feature_layer=vision_feature_layer,
|
| 195 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
| 199 |
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
| 200 |
+
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
| 201 |
+
n_image_tokens = (input_ids == self.config.image_token_index).sum()
|
| 202 |
+
n_image_features = image_features.shape[0]
|
| 203 |
+
raise ValueError(
|
| 204 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
| 205 |
+
)
|
| 206 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
| 207 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
| 208 |
+
|
| 209 |
+
outputs = self.language_model(
|
| 210 |
+
attention_mask=attention_mask,
|
| 211 |
+
position_ids=position_ids,
|
| 212 |
+
past_key_values=past_key_values,
|
| 213 |
+
inputs_embeds=inputs_embeds,
|
| 214 |
+
use_cache=use_cache,
|
| 215 |
+
output_attentions=output_attentions,
|
| 216 |
+
output_hidden_states=output_hidden_states,
|
| 217 |
+
return_dict=return_dict,
|
| 218 |
+
cache_position=cache_position,
|
| 219 |
+
logits_to_keep=logits_to_keep,
|
| 220 |
+
**lm_kwargs,
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
logits = outputs[0]
|
| 224 |
+
|
| 225 |
+
loss = None
|
| 226 |
+
if labels is not None:
|
| 227 |
+
# Shift so that tokens < n predict n
|
| 228 |
+
if attention_mask is not None:
|
| 229 |
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
| 230 |
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
| 231 |
+
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
|
| 232 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
| 233 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
| 234 |
+
else:
|
| 235 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 236 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 237 |
+
# Flatten the tokens
|
| 238 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 239 |
+
loss = loss_fct(
|
| 240 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
if not return_dict:
|
| 244 |
+
output = (logits,) + outputs[1:]
|
| 245 |
+
return (loss,) + output if loss is not None else output
|
| 246 |
+
|
| 247 |
+
return AX4CausalLMOutputWithPast(
|
| 248 |
+
loss=loss,
|
| 249 |
+
logits=logits,
|
| 250 |
+
past_key_values=outputs.past_key_values,
|
| 251 |
+
hidden_states=outputs.hidden_states,
|
| 252 |
+
attentions=outputs.attentions,
|
| 253 |
+
image_hidden_states=image_features if pixel_values is not None else None,
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
def prepare_inputs_for_generation(
|
| 257 |
+
self,
|
| 258 |
+
input_ids,
|
| 259 |
+
past_key_values=None,
|
| 260 |
+
inputs_embeds=None,
|
| 261 |
+
pixel_values=None,
|
| 262 |
+
image_sizes=None,
|
| 263 |
+
attention_mask=None,
|
| 264 |
+
cache_position=None,
|
| 265 |
+
logits_to_keep=None,
|
| 266 |
+
**kwargs,
|
| 267 |
+
):
|
| 268 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
| 269 |
+
|
| 270 |
+
model_inputs = self.language_model.prepare_inputs_for_generation(
|
| 271 |
+
input_ids,
|
| 272 |
+
past_key_values=past_key_values,
|
| 273 |
+
inputs_embeds=inputs_embeds,
|
| 274 |
+
attention_mask=attention_mask,
|
| 275 |
+
cache_position=cache_position,
|
| 276 |
+
logits_to_keep=logits_to_keep,
|
| 277 |
+
**kwargs,
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
| 281 |
+
# Otherwise we need pixel values to be passed to model
|
| 282 |
+
if cache_position[0] == 0:
|
| 283 |
+
model_inputs["pixel_values"] = pixel_values
|
| 284 |
+
model_inputs["image_sizes"] = image_sizes
|
| 285 |
+
|
| 286 |
+
return model_inputs
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class FeatureIRLayer(nn.Module):
|
| 293 |
+
def __init__(self, in_dim: int, out_dim: int) -> None:
|
| 294 |
+
super().__init__()
|
| 295 |
+
self.mlp = nn.Sequential(
|
| 296 |
+
nn.Linear(in_dim, out_dim), nn.GELU(), nn.Linear(out_dim, out_dim)
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 300 |
+
return self.mlp(x)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class TokenDownLayer(nn.Module):
|
| 304 |
+
def __init__(self, shape) -> None:
|
| 305 |
+
super().__init__()
|
| 306 |
+
self.dwn = nn.Sequential(
|
| 307 |
+
nn.AdaptiveAvgPool2d(shape)
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 311 |
+
b, num_tokens, c = x.shape
|
| 312 |
+
h = int(math.sqrt(num_tokens))
|
| 313 |
+
assert h * h == num_tokens
|
| 314 |
+
x = x.permute(0, 2, 1).reshape(b, -1, h, h)
|
| 315 |
+
x = self.dwn(x)
|
| 316 |
+
x = x.flatten(2).transpose(1, 2)
|
| 317 |
+
return x
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
class PosInjectLayer(nn.Module):
|
| 321 |
+
# https://github.com/Meituan-AutoML/Twins/blob/main/gvt.py
|
| 322 |
+
def __init__(
|
| 323 |
+
self,
|
| 324 |
+
in_dim: int,
|
| 325 |
+
out_dim: int,
|
| 326 |
+
stride: int = 1,
|
| 327 |
+
padding: int = 1,
|
| 328 |
+
shape = None) -> None:
|
| 329 |
+
super().__init__()
|
| 330 |
+
self.peg = nn.Sequential(
|
| 331 |
+
nn.Conv2d(in_dim, out_dim, 3, stride, padding, bias=True, groups=out_dim)
|
| 332 |
+
)
|
| 333 |
+
self.pool = None
|
| 334 |
+
if shape is not None:
|
| 335 |
+
self.pool = nn.Sequential(
|
| 336 |
+
nn.AdaptiveAvgPool2d(shape)
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 340 |
+
b, num_tokens, c = x.shape
|
| 341 |
+
h = int(math.sqrt(num_tokens))
|
| 342 |
+
assert h * h == num_tokens
|
| 343 |
+
cnn_feat = x.transpose(1, 2).view(b, c, h, h)
|
| 344 |
+
if self.pool is not None:
|
| 345 |
+
x = self.peg(cnn_feat) + self.pool(cnn_feat)
|
| 346 |
+
else:
|
| 347 |
+
x = self.peg(cnn_feat) + cnn_feat
|
| 348 |
+
x = x.flatten(2).transpose(1, 2)
|
| 349 |
+
return x
|
| 350 |
+
|
| 351 |
+
class LDPProjector(PreTrainedModel):
|
| 352 |
+
config_class = LDPConfig
|
| 353 |
+
_no_split_modules = []
|
| 354 |
+
|
| 355 |
+
def __init__(self, config):
|
| 356 |
+
super().__init__(config)
|
| 357 |
+
inc, ouc = config.in_hidden_size, config.out_hidden_size
|
| 358 |
+
grid = config.grid_size
|
| 359 |
+
self.mlp = FeatureIRLayer(inc, ouc)
|
| 360 |
+
self.dwn = TokenDownLayer((grid, grid))
|
| 361 |
+
self.peg = PosInjectLayer(ouc, ouc, stride=1)
|
| 362 |
+
|
| 363 |
+
def forward(self, x):
|
| 364 |
+
x = self.mlp(x)
|
| 365 |
+
x = self.dwn(x)
|
| 366 |
+
x = self.peg(x)
|
| 367 |
+
return x
|
| 368 |
+
|
| 369 |
+
class MLPProjector(PreTrainedModel):
|
| 370 |
+
config_class = MLPProjectorConfig
|
| 371 |
+
_no_split_modules = []
|
| 372 |
+
|
| 373 |
+
def __init__(self, config):
|
| 374 |
+
super().__init__(config)
|
| 375 |
+
|
| 376 |
+
self.linear_1 = nn.Linear(config.in_hidden_size, config.out_hidden_size, bias=config.bias)
|
| 377 |
+
self.act = ACT2FN[config.hidden_act]
|
| 378 |
+
self.linear_2 = nn.Linear(config.out_hidden_size, config.out_hidden_size, bias=config.bias)
|
| 379 |
+
|
| 380 |
+
def forward(self, image_features):
|
| 381 |
+
hidden_states = self.linear_1(image_features)
|
| 382 |
+
hidden_states = self.act(hidden_states)
|
| 383 |
+
hidden_states = self.linear_2(hidden_states)
|
| 384 |
+
return hidden_states
|
| 385 |
+
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "image_processing_ax4vl.AX4VLImageProcessor",
|
| 4 |
+
"AutoProcessor": "processing_ax4vl.AX4VLProcessor"
|
| 5 |
+
},
|
| 6 |
+
"do_convert_rgb": true,
|
| 7 |
+
"do_normalize": true,
|
| 8 |
+
"do_pad": false,
|
| 9 |
+
"do_rescale": true,
|
| 10 |
+
"do_resize": true,
|
| 11 |
+
"do_tile_pad": false,
|
| 12 |
+
"image_mean": [
|
| 13 |
+
0.5,
|
| 14 |
+
0.5,
|
| 15 |
+
0.5
|
| 16 |
+
],
|
| 17 |
+
"image_processor_type": "AX4VLImageProcessor",
|
| 18 |
+
"image_std": [
|
| 19 |
+
0.5,
|
| 20 |
+
0.5,
|
| 21 |
+
0.5
|
| 22 |
+
],
|
| 23 |
+
"max_num_tiles": 12,
|
| 24 |
+
"min_num_tiles": 1,
|
| 25 |
+
"processor_class": "AX4VLProcessor",
|
| 26 |
+
"resample": 2,
|
| 27 |
+
"rescale_factor": 0.00392156862745098,
|
| 28 |
+
"size": {
|
| 29 |
+
"shortest_edge": 384
|
| 30 |
+
},
|
| 31 |
+
"use_thumbnail": true
|
| 32 |
+
}
|
processing_ax4vl.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Union
|
| 2 |
+
from .configuration_ax4vl import AX4VLConfig
|
| 3 |
+
from transformers.models.auto import AutoProcessor
|
| 4 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 5 |
+
from transformers.image_utils import ImageInput
|
| 6 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 7 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, _validate_images_text_input_order
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class BaseAXProcessor(ProcessorMixin):
|
| 12 |
+
attributes = ["image_processor", "tokenizer"]
|
| 13 |
+
image_processor_class = "AutoImageProcessor"
|
| 14 |
+
tokenizer_class = "AutoTokenizer"
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class AX4VLProcessorKwargs(ProcessingKwargs, total=False):
|
| 18 |
+
_defaults = {
|
| 19 |
+
"text_kwargs": {
|
| 20 |
+
"padding": False,
|
| 21 |
+
},
|
| 22 |
+
"images_kwargs": {
|
| 23 |
+
"do_pad": False,
|
| 24 |
+
},
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class AX4VLProcessor(BaseAXProcessor):
|
| 29 |
+
valid_kwargs = [
|
| 30 |
+
"chat_template",
|
| 31 |
+
"patch_size",
|
| 32 |
+
"num_tokens_per_tile",
|
| 33 |
+
"image_token",
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
image_processor=None,
|
| 39 |
+
tokenizer=None,
|
| 40 |
+
patch_size=16,
|
| 41 |
+
num_tokens_per_tile=144,
|
| 42 |
+
image_token="<image>", # set the default and let users change if they have peculiar special tokens in rare cases
|
| 43 |
+
chat_template=None,
|
| 44 |
+
**kwargs
|
| 45 |
+
):
|
| 46 |
+
self.patch_size = patch_size
|
| 47 |
+
self.num_tokens_per_tile = num_tokens_per_tile
|
| 48 |
+
self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
|
| 49 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
| 50 |
+
|
| 51 |
+
def __call__(
|
| 52 |
+
self,
|
| 53 |
+
images: ImageInput = None,
|
| 54 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 55 |
+
conversations: List = None,
|
| 56 |
+
**kwargs
|
| 57 |
+
) -> BatchFeature:
|
| 58 |
+
if images is None and conversations is None and text is None:
|
| 59 |
+
raise ValueError("You have to specify at least images, text or conversation.")
|
| 60 |
+
|
| 61 |
+
if not text and conversations is not None:
|
| 62 |
+
if isinstance(conversations[0], dict):
|
| 63 |
+
conversations = [conversations]
|
| 64 |
+
text = [self.apply_chat_template(conv, **kwargs) for conv in conversations]
|
| 65 |
+
|
| 66 |
+
images, text = _validate_images_text_input_order(images, text)
|
| 67 |
+
|
| 68 |
+
output_kwargs = self._merge_kwargs(
|
| 69 |
+
AX4VLProcessorKwargs,
|
| 70 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 71 |
+
**kwargs,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
if images is not None:
|
| 75 |
+
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
| 76 |
+
else:
|
| 77 |
+
image_inputs = {}
|
| 78 |
+
|
| 79 |
+
prompt_strings = text
|
| 80 |
+
if image_inputs:
|
| 81 |
+
num_tiles = iter(image_inputs["num_tiles"])
|
| 82 |
+
prompt_strings = []
|
| 83 |
+
for sample in text:
|
| 84 |
+
while self.image_token in sample:
|
| 85 |
+
num_tile = next(num_tiles)
|
| 86 |
+
num_image_tokens = num_tile * self.num_tokens_per_tile
|
| 87 |
+
sample = sample.replace(self.image_token, "<placeholder>" * num_image_tokens, 1)
|
| 88 |
+
prompt_strings.append(sample)
|
| 89 |
+
prompt_strings = [sample.replace("<placeholder>", self.image_token) for sample in prompt_strings]
|
| 90 |
+
|
| 91 |
+
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
|
| 92 |
+
|
| 93 |
+
if "num_tiles" in image_inputs:
|
| 94 |
+
del image_inputs["num_tiles"]
|
| 95 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
| 96 |
+
|
| 97 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
| 98 |
+
def batch_decode(self, *args, **kwargs):
|
| 99 |
+
"""
|
| 100 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 101 |
+
refer to the docstring of this method for more information.
|
| 102 |
+
"""
|
| 103 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 104 |
+
|
| 105 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
| 106 |
+
def decode(self, *args, **kwargs):
|
| 107 |
+
"""
|
| 108 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 109 |
+
the docstring of this method for more information.
|
| 110 |
+
"""
|
| 111 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 112 |
+
|
| 113 |
+
@property
|
| 114 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
| 115 |
+
def model_input_names(self):
|
| 116 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 117 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 118 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
AutoProcessor.register(AX4VLConfig, AX4VLProcessor)
|
processor_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_ax4vl.AX4VLProcessor"
|
| 4 |
+
},
|
| 5 |
+
"image_token": "<|extra_id_11|>",
|
| 6 |
+
"num_tokens_per_tile": 144,
|
| 7 |
+
"patch_size": 16,
|
| 8 |
+
"processor_class": "AX4VLProcessor"
|
| 9 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|endoftext|>",
|
| 4 |
+
"<|pad|>",
|
| 5 |
+
"<|unk|>",
|
| 6 |
+
"<|sep|>",
|
| 7 |
+
"<|mask|>",
|
| 8 |
+
"<|cls|>",
|
| 9 |
+
"<|image|>",
|
| 10 |
+
"<|audio|>",
|
| 11 |
+
"<|user|>",
|
| 12 |
+
"<|system|>",
|
| 13 |
+
"<|assistant|>",
|
| 14 |
+
"<|extra_id_0|>",
|
| 15 |
+
"<|extra_id_1|>",
|
| 16 |
+
"<|extra_id_2|>",
|
| 17 |
+
"<|extra_id_3|>",
|
| 18 |
+
"<|extra_id_4|>",
|
| 19 |
+
"<|extra_id_5|>",
|
| 20 |
+
"<|extra_id_6|>",
|
| 21 |
+
"<|extra_id_7|>",
|
| 22 |
+
"<|extra_id_8|>",
|
| 23 |
+
"<|extra_id_9|>",
|
| 24 |
+
"<|extra_id_10|>",
|
| 25 |
+
"<|extra_id_11|>",
|
| 26 |
+
"<|extra_id_12|>",
|
| 27 |
+
"<|extra_id_13|>",
|
| 28 |
+
"<|im_start|>",
|
| 29 |
+
"<|im_sep|>",
|
| 30 |
+
"<|im_end|>",
|
| 31 |
+
"<|resident_reg|>",
|
| 32 |
+
"<|foreigner_reg|>",
|
| 33 |
+
"<|business_reg|>",
|
| 34 |
+
"<|credit_card|>",
|
| 35 |
+
"<|passport|>",
|
| 36 |
+
"<|driver_license|>",
|
| 37 |
+
"<|telephone|>",
|
| 38 |
+
"<|health_insurance|>",
|
| 39 |
+
"<|bank_account|>"
|
| 40 |
+
],
|
| 41 |
+
"bos_token": {
|
| 42 |
+
"content": "<|endoftext|>",
|
| 43 |
+
"lstrip": false,
|
| 44 |
+
"normalized": false,
|
| 45 |
+
"rstrip": false,
|
| 46 |
+
"single_word": false
|
| 47 |
+
},
|
| 48 |
+
"cls_token": {
|
| 49 |
+
"content": "<|cls|>",
|
| 50 |
+
"lstrip": false,
|
| 51 |
+
"normalized": false,
|
| 52 |
+
"rstrip": false,
|
| 53 |
+
"single_word": false
|
| 54 |
+
},
|
| 55 |
+
"eos_token": {
|
| 56 |
+
"content": "<|im_end|>",
|
| 57 |
+
"lstrip": false,
|
| 58 |
+
"normalized": false,
|
| 59 |
+
"rstrip": false,
|
| 60 |
+
"single_word": false
|
| 61 |
+
},
|
| 62 |
+
"mask_token": {
|
| 63 |
+
"content": "<|mask|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false
|
| 68 |
+
},
|
| 69 |
+
"pad_token": {
|
| 70 |
+
"content": "<|pad|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false
|
| 75 |
+
},
|
| 76 |
+
"sep_token": {
|
| 77 |
+
"content": "<|sep|>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false
|
| 82 |
+
},
|
| 83 |
+
"unk_token": {
|
| 84 |
+
"content": "<|unk|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false
|
| 89 |
+
}
|
| 90 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<|endoftext|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<|pad|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "<|unk|>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"3": {
|
| 31 |
+
"content": "<|sep|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"4": {
|
| 39 |
+
"content": "<|mask|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"5": {
|
| 47 |
+
"content": "<|cls|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"6": {
|
| 55 |
+
"content": "<|image|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"7": {
|
| 63 |
+
"content": "<|audio|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"8": {
|
| 71 |
+
"content": "<|user|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"9": {
|
| 79 |
+
"content": "<|system|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"10": {
|
| 87 |
+
"content": "<|assistant|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"11": {
|
| 95 |
+
"content": "<|extra_id_0|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"12": {
|
| 103 |
+
"content": "<|extra_id_1|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"13": {
|
| 111 |
+
"content": "<|extra_id_2|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
},
|
| 118 |
+
"14": {
|
| 119 |
+
"content": "<|extra_id_3|>",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": false,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": true
|
| 125 |
+
},
|
| 126 |
+
"15": {
|
| 127 |
+
"content": "<|extra_id_4|>",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": false,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": true
|
| 133 |
+
},
|
| 134 |
+
"16": {
|
| 135 |
+
"content": "<|extra_id_5|>",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": false,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": true
|
| 141 |
+
},
|
| 142 |
+
"17": {
|
| 143 |
+
"content": "<|extra_id_6|>",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": false,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": true
|
| 149 |
+
},
|
| 150 |
+
"18": {
|
| 151 |
+
"content": "<|extra_id_7|>",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": false,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": true
|
| 157 |
+
},
|
| 158 |
+
"19": {
|
| 159 |
+
"content": "<|extra_id_8|>",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": false,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": true
|
| 165 |
+
},
|
| 166 |
+
"20": {
|
| 167 |
+
"content": "<|extra_id_9|>",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": false,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": true
|
| 173 |
+
},
|
| 174 |
+
"21": {
|
| 175 |
+
"content": "<|extra_id_10|>",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": false,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": true
|
| 181 |
+
},
|
| 182 |
+
"22": {
|
| 183 |
+
"content": "<|extra_id_11|>",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": false,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": true
|
| 189 |
+
},
|
| 190 |
+
"23": {
|
| 191 |
+
"content": "<|extra_id_12|>",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": false,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": true
|
| 197 |
+
},
|
| 198 |
+
"24": {
|
| 199 |
+
"content": "<|extra_id_13|>",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": false,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": true
|
| 205 |
+
},
|
| 206 |
+
"25": {
|
| 207 |
+
"content": "<|im_start|>",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": false,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": true
|
| 213 |
+
},
|
| 214 |
+
"26": {
|
| 215 |
+
"content": "<|im_sep|>",
|
| 216 |
+
"lstrip": false,
|
| 217 |
+
"normalized": false,
|
| 218 |
+
"rstrip": false,
|
| 219 |
+
"single_word": false,
|
| 220 |
+
"special": true
|
| 221 |
+
},
|
| 222 |
+
"27": {
|
| 223 |
+
"content": "<|im_end|>",
|
| 224 |
+
"lstrip": false,
|
| 225 |
+
"normalized": false,
|
| 226 |
+
"rstrip": false,
|
| 227 |
+
"single_word": false,
|
| 228 |
+
"special": true
|
| 229 |
+
},
|
| 230 |
+
"28": {
|
| 231 |
+
"content": "<|resident_reg|>",
|
| 232 |
+
"lstrip": false,
|
| 233 |
+
"normalized": false,
|
| 234 |
+
"rstrip": false,
|
| 235 |
+
"single_word": false,
|
| 236 |
+
"special": true
|
| 237 |
+
},
|
| 238 |
+
"29": {
|
| 239 |
+
"content": "<|foreigner_reg|>",
|
| 240 |
+
"lstrip": false,
|
| 241 |
+
"normalized": false,
|
| 242 |
+
"rstrip": false,
|
| 243 |
+
"single_word": false,
|
| 244 |
+
"special": true
|
| 245 |
+
},
|
| 246 |
+
"30": {
|
| 247 |
+
"content": "<|business_reg|>",
|
| 248 |
+
"lstrip": false,
|
| 249 |
+
"normalized": false,
|
| 250 |
+
"rstrip": false,
|
| 251 |
+
"single_word": false,
|
| 252 |
+
"special": true
|
| 253 |
+
},
|
| 254 |
+
"31": {
|
| 255 |
+
"content": "<|credit_card|>",
|
| 256 |
+
"lstrip": false,
|
| 257 |
+
"normalized": false,
|
| 258 |
+
"rstrip": false,
|
| 259 |
+
"single_word": false,
|
| 260 |
+
"special": true
|
| 261 |
+
},
|
| 262 |
+
"32": {
|
| 263 |
+
"content": "<|passport|>",
|
| 264 |
+
"lstrip": false,
|
| 265 |
+
"normalized": false,
|
| 266 |
+
"rstrip": false,
|
| 267 |
+
"single_word": false,
|
| 268 |
+
"special": true
|
| 269 |
+
},
|
| 270 |
+
"33": {
|
| 271 |
+
"content": "<|driver_license|>",
|
| 272 |
+
"lstrip": false,
|
| 273 |
+
"normalized": false,
|
| 274 |
+
"rstrip": false,
|
| 275 |
+
"single_word": false,
|
| 276 |
+
"special": true
|
| 277 |
+
},
|
| 278 |
+
"34": {
|
| 279 |
+
"content": "<|telephone|>",
|
| 280 |
+
"lstrip": false,
|
| 281 |
+
"normalized": false,
|
| 282 |
+
"rstrip": false,
|
| 283 |
+
"single_word": false,
|
| 284 |
+
"special": true
|
| 285 |
+
},
|
| 286 |
+
"35": {
|
| 287 |
+
"content": "<|health_insurance|>",
|
| 288 |
+
"lstrip": false,
|
| 289 |
+
"normalized": false,
|
| 290 |
+
"rstrip": false,
|
| 291 |
+
"single_word": false,
|
| 292 |
+
"special": true
|
| 293 |
+
},
|
| 294 |
+
"36": {
|
| 295 |
+
"content": "<|bank_account|>",
|
| 296 |
+
"lstrip": false,
|
| 297 |
+
"normalized": false,
|
| 298 |
+
"rstrip": false,
|
| 299 |
+
"single_word": false,
|
| 300 |
+
"special": true
|
| 301 |
+
},
|
| 302 |
+
"37": {
|
| 303 |
+
"content": "</tool_output>",
|
| 304 |
+
"lstrip": false,
|
| 305 |
+
"normalized": false,
|
| 306 |
+
"rstrip": false,
|
| 307 |
+
"single_word": false,
|
| 308 |
+
"special": false
|
| 309 |
+
},
|
| 310 |
+
"38": {
|
| 311 |
+
"content": "<tool_output>",
|
| 312 |
+
"lstrip": false,
|
| 313 |
+
"normalized": false,
|
| 314 |
+
"rstrip": false,
|
| 315 |
+
"single_word": false,
|
| 316 |
+
"special": false
|
| 317 |
+
},
|
| 318 |
+
"39": {
|
| 319 |
+
"content": "</tool_call>",
|
| 320 |
+
"lstrip": false,
|
| 321 |
+
"normalized": false,
|
| 322 |
+
"rstrip": false,
|
| 323 |
+
"single_word": false,
|
| 324 |
+
"special": false
|
| 325 |
+
},
|
| 326 |
+
"40": {
|
| 327 |
+
"content": "<tool_call>",
|
| 328 |
+
"lstrip": false,
|
| 329 |
+
"normalized": false,
|
| 330 |
+
"rstrip": false,
|
| 331 |
+
"single_word": false,
|
| 332 |
+
"special": false
|
| 333 |
+
}
|
| 334 |
+
},
|
| 335 |
+
"additional_special_tokens": [
|
| 336 |
+
"<|endoftext|>",
|
| 337 |
+
"<|pad|>",
|
| 338 |
+
"<|unk|>",
|
| 339 |
+
"<|sep|>",
|
| 340 |
+
"<|mask|>",
|
| 341 |
+
"<|cls|>",
|
| 342 |
+
"<|image|>",
|
| 343 |
+
"<|audio|>",
|
| 344 |
+
"<|user|>",
|
| 345 |
+
"<|system|>",
|
| 346 |
+
"<|assistant|>",
|
| 347 |
+
"<|extra_id_0|>",
|
| 348 |
+
"<|extra_id_1|>",
|
| 349 |
+
"<|extra_id_2|>",
|
| 350 |
+
"<|extra_id_3|>",
|
| 351 |
+
"<|extra_id_4|>",
|
| 352 |
+
"<|extra_id_5|>",
|
| 353 |
+
"<|extra_id_6|>",
|
| 354 |
+
"<|extra_id_7|>",
|
| 355 |
+
"<|extra_id_8|>",
|
| 356 |
+
"<|extra_id_9|>",
|
| 357 |
+
"<|extra_id_10|>",
|
| 358 |
+
"<|extra_id_11|>",
|
| 359 |
+
"<|extra_id_12|>",
|
| 360 |
+
"<|extra_id_13|>",
|
| 361 |
+
"<|im_start|>",
|
| 362 |
+
"<|im_sep|>",
|
| 363 |
+
"<|im_end|>",
|
| 364 |
+
"<|resident_reg|>",
|
| 365 |
+
"<|foreigner_reg|>",
|
| 366 |
+
"<|business_reg|>",
|
| 367 |
+
"<|credit_card|>",
|
| 368 |
+
"<|passport|>",
|
| 369 |
+
"<|driver_license|>",
|
| 370 |
+
"<|telephone|>",
|
| 371 |
+
"<|health_insurance|>",
|
| 372 |
+
"<|bank_account|>"
|
| 373 |
+
],
|
| 374 |
+
"bos_token": "<|endoftext|>",
|
| 375 |
+
"chat_template": "{%- if tools is iterable and tools | length > 0 %}\n {{- '<|im_start|><|system|>'}}\n {{- '당신은 도구 호출 기능을 갖춘 유용한 도우미입니다. 사용자의 요청을 처리하기 위해서 필요한 도구가 주어진 목록에 있는 경우 도구 호출로 응답하세요.\n필요한 도구가 목록에 없는 경우에는 도구 호출 없이 사용자가 요구한 정보를 제공하세요.\n필요한 도구가 목록에 있지만 해당 도구를 호출하는데 필요한 argument 정보가 부족한 경우 해당 정보를 사용자에게 요청하세요.\n사용자의 요청을 처리하기 위해 여러번 도구를 호출할 수 있어야 합니다.\n도구 호출 이후 도구 실행 결과를 입력으로 받으면 해당 결과를 활용하여 답변을 생성하세요.\n\n다음은 접근할 수 있는 도구들의 목록 입니다:\n<tools>\n'}}\n {%- for t in tools %}\n {{- t | tojson }}\n {{- '\n' }}\n {%- endfor %}\n {{- '</tools>' }}\n {{- '\n\n도구를 호출하려면 아래의 JSON으로 응답하세요.\n도구 호출 형식: <tool_call>{\"name\": 도구 이름, \"arguments\": dictionary 형태의 도구 인자값}</tool_call>' }}\n \n {%- if messages[0].role == 'system' %}\n {{- '\n\n' + messages[0].content}}\n {% set dummy = messages.pop(0) %}\n {%- endif %} \n {{- '<|im_end|>' }}\n {%- endif %}\n \n {%- for message in messages %}\n {%- if message.role == 'system' %}\n {{- '<|im_start|><|system|>' + message.content + '<|im_end|>'}}\n {%- elif message.role == 'user' %}\n {{- '<|im_start|><|user|>' + message.content + '<|im_end|>'}}\n {%- elif message.role == 'assistant' %}\n {{- '<|im_start|><|assistant|>'}}\n {%- if message.content is defined %}\n {{- message.content}}\n {%- endif %}\n {%- if message.tool_calls is defined %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>' }}\n {{- '{' }}\n {{- '\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\"' }}\n {%- if tool_call.arguments is defined %}\n {{- ', ' }}\n {{- '\"arguments\": ' }}\n {{- tool_call.arguments|tojson }}\n {%- endif %}\n {{- '}' }}\n {{- '</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>'}}\n \n {%- elif message.role == 'tool' %}\n {{- '<|im_start|><|extra_id_13|><tool_output>' + message.content + '</tool_output><|im_end|>'}}\n {%- endif %}\n {%- endfor %}\n {%- if add_generation_prompt %}\n {{- '<|im_start|><|assistant|>'}}\n {%- endif %}",
|
| 376 |
+
"clean_up_tokenization_spaces": true,
|
| 377 |
+
"auto_map": {
|
| 378 |
+
"AutoProcessor": "processing_ax4vl.AX4VLProcessor"
|
| 379 |
+
},
|
| 380 |
+
"cls_token": "<|cls|>",
|
| 381 |
+
"eod_token": "<|endoftext|>",
|
| 382 |
+
"eos_token": "<|im_end|>",
|
| 383 |
+
"errors": "replace",
|
| 384 |
+
"extra_special_tokens": {},
|
| 385 |
+
"mask_token": "<|mask|>",
|
| 386 |
+
"model_max_length": 8192,
|
| 387 |
+
"pad_token": "<|pad|>",
|
| 388 |
+
"padding_side": "right",
|
| 389 |
+
"processor_class": "AX4VLProcessor",
|
| 390 |
+
"sep_token": "<|sep|>",
|
| 391 |
+
"tokenizer_class": "GPT2Tokenizer",
|
| 392 |
+
"truncation_side": "left",
|
| 393 |
+
"unk_token": "<|unk|>",
|
| 394 |
+
"vocab_size": 102400
|
| 395 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|