Update configuration_quasrav4.py
Browse files- configuration_quasrav4.py +26 -49
configuration_quasrav4.py
CHANGED
@@ -7,56 +7,32 @@ class QuasraV4Config(PretrainedConfig):
|
|
7 |
"""
|
8 |
model_type = "quasarv4"
|
9 |
|
10 |
-
def __init__(
|
11 |
-
|
12 |
-
vocab_size=151669
|
13 |
-
hidden_size=768
|
14 |
-
num_hidden_layers=
|
15 |
-
num_attention_heads=12
|
16 |
-
intermediate_size=3072
|
17 |
-
hidden_dropout_prob=0.1
|
18 |
-
attention_probs_dropout_prob=0.1
|
19 |
-
max_position_embeddings=
|
20 |
-
initializer_range=0.02
|
21 |
-
layer_norm_eps=1e-5
|
22 |
-
use_rotary_embeddings=True
|
23 |
-
rotary_embedding_base=10000
|
24 |
-
use_multi_scale_memory=True
|
25 |
-
num_memory_scales=3
|
26 |
-
memory_compression_ratio=0.5
|
27 |
-
memory_compression_frequency=100
|
28 |
-
kernel_type='elu'
|
29 |
-
kernel_epsilon=0.1
|
30 |
-
use_gating=True
|
31 |
-
gate_init_bias
|
32 |
-
use_gradient_checkpointing=False
|
33 |
-
# `**kwargs` will catch all standard Hugging Face parameters
|
34 |
-
**kwargs,
|
35 |
-
):
|
36 |
-
# Set model-specific attributes
|
37 |
-
self.vocab_size = vocab_size
|
38 |
-
self.hidden_size = hidden_size
|
39 |
-
self.num_hidden_layers = num_hidden_layers
|
40 |
-
self.num_attention_heads = num_attention_heads
|
41 |
-
self.intermediate_size = intermediate_size
|
42 |
-
self.hidden_dropout_prob = hidden_dropout_prob
|
43 |
-
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
44 |
-
self.max_position_embeddings = max_position_embeddings
|
45 |
-
self.initializer_range = initializer_range
|
46 |
-
self.layer_norm_eps = layer_norm_eps
|
47 |
-
self.use_rotary_embeddings = use_rotary_embeddings
|
48 |
-
self.rotary_embedding_base = rotary_embedding_base
|
49 |
-
self.use_multi_scale_memory = use_multi_scale_memory
|
50 |
-
self.num_memory_scales = num_memory_scales
|
51 |
-
self.memory_compression_ratio = memory_compression_ratio
|
52 |
-
self.memory_compression_frequency = memory_compression_frequency
|
53 |
-
self.kernel_type = kernel_type
|
54 |
-
self.kernel_epsilon = kernel_epsilon
|
55 |
-
self.use_gating = use_gating
|
56 |
-
self.gate_init_bias = gate_init_bias
|
57 |
-
self.use_gradient_checkpointing = use_gradient_checkpointing
|
58 |
|
59 |
-
# Pass
|
|
|
60 |
super().__init__(**kwargs)
|
61 |
|
62 |
# Validation logic
|
@@ -68,3 +44,4 @@ class QuasraV4Config(PretrainedConfig):
|
|
68 |
if self.kernel_type not in ['elu', 'relu', 'learnable']:
|
69 |
raise ValueError(f"`kernel_type` must be one of 'elu', 'relu', or 'learnable', got {self.kernel_type}")
|
70 |
|
|
|
|
7 |
"""
|
8 |
model_type = "quasarv4"
|
9 |
|
10 |
+
def __init__(self, **kwargs):
|
11 |
+
# Pop custom arguments from kwargs, using defaults from your config.json
|
12 |
+
self.vocab_size = kwargs.pop("vocab_size", 151669)
|
13 |
+
self.hidden_size = kwargs.pop("hidden_size", 768)
|
14 |
+
self.num_hidden_layers = kwargs.pop("num_hidden_layers", 54)
|
15 |
+
self.num_attention_heads = kwargs.pop("num_attention_heads", 12)
|
16 |
+
self.intermediate_size = kwargs.pop("intermediate_size", 3072)
|
17 |
+
self.hidden_dropout_prob = kwargs.pop("hidden_dropout_prob", 0.1)
|
18 |
+
self.attention_probs_dropout_prob = kwargs.pop("attention_probs_dropout_prob", 0.1)
|
19 |
+
self.max_position_embeddings = kwargs.pop("max_position_embeddings", 812)
|
20 |
+
self.initializer_range = kwargs.pop("initializer_range", 0.02)
|
21 |
+
self.layer_norm_eps = kwargs.pop("layer_norm_eps", 1e-5)
|
22 |
+
self.use_rotary_embeddings = kwargs.pop("use_rotary_embeddings", True)
|
23 |
+
self.rotary_embedding_base = kwargs.pop("rotary_embedding_base", 10000)
|
24 |
+
self.use_multi_scale_memory = kwargs.pop("use_multi_scale_memory", True)
|
25 |
+
self.num_memory_scales = kwargs.pop("num_memory_scales", 3)
|
26 |
+
self.memory_compression_ratio = kwargs.pop("memory_compression_ratio", 0.5)
|
27 |
+
self.memory_compression_frequency = kwargs.pop("memory_compression_frequency", 100)
|
28 |
+
self.kernel_type = kwargs.pop("kernel_type", 'elu')
|
29 |
+
self.kernel_epsilon = kwargs.pop("kernel_epsilon", 0.1)
|
30 |
+
self.use_gating = kwargs.pop("use_gating", True)
|
31 |
+
self.gate_init_bias = kwargs.pop("gate_init_bias", -2.0)
|
32 |
+
self.use_gradient_checkpointing = kwargs.pop("use_gradient_checkpointing", False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Pass the rest of the arguments to the parent class.
|
35 |
+
# This will include 'use_return_dict', 'tie_word_embeddings', 'architectures', etc.
|
36 |
super().__init__(**kwargs)
|
37 |
|
38 |
# Validation logic
|
|
|
44 |
if self.kernel_type not in ['elu', 'relu', 'learnable']:
|
45 |
raise ValueError(f"`kernel_type` must be one of 'elu', 'relu', or 'learnable', got {self.kernel_type}")
|
46 |
|
47 |
+
|