Commit
·
2e3565a
1
Parent(s):
045d2b8
Add code from Mosaic BERT model
Browse files- .gitignore +1 -0
- bert_layers.py +1072 -0
- bert_padding.py +159 -0
- config.json +3 -2
- configuration_bert.py +25 -0
- flash_attn_triton.py +1160 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
mosaic_bert/
|
bert_layers.py
ADDED
|
@@ -0,0 +1,1072 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 MosaicML Examples authors
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
| 5 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
| 6 |
+
# Copyright (c) 2022, Tri Dao.
|
| 7 |
+
|
| 8 |
+
"""Implements Mosaic BERT, with an eye towards the Hugging Face API.
|
| 9 |
+
|
| 10 |
+
Mosaic BERT improves performance over Hugging Face BERT through the following:
|
| 11 |
+
|
| 12 |
+
1. ALiBi. This architectural change removes positional embeddings and instead encodes positional
|
| 13 |
+
information through attention biases based on query-key position distance. It improves the effectiveness
|
| 14 |
+
of training with shorter sequence lengths by enabling extrapolation to longer sequences.
|
| 15 |
+
|
| 16 |
+
2. Gated Linear Units (GLU). This architectural change replaces the FFN component of the BERT layer
|
| 17 |
+
to improve overall expressiveness, providing better convergence properties.
|
| 18 |
+
|
| 19 |
+
3. Flash Attention. The Mosaic BERT's self-attention layer makes use of Flash Attention, which dramatically
|
| 20 |
+
improves the speed of self-attention. Our implementation utilizes a bleeding edge implementation that
|
| 21 |
+
supports attention biases, which allows us to use Flash Attention with ALiBi.
|
| 22 |
+
|
| 23 |
+
4. Unpadding. Padding is often used to simplify batching across sequences of different lengths. Standard BERT
|
| 24 |
+
implementations waste computation on padded tokens. Mosaic BERT internally unpads to reduce unnecessary computation
|
| 25 |
+
and improve speed. It does this without changing how the user interfaces with the model, thereby
|
| 26 |
+
preserving the simple API of standard implementations.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
Currently, Mosaic BERT is available for masked language modeling :class:`BertForMaskedLM` and sequence
|
| 30 |
+
classification :class:`BertForSequenceClassification`. We aim to expand this catalogue in future releases.
|
| 31 |
+
|
| 32 |
+
See :file:`./mosaic_bert.py` for utilities to simplify working with Mosaic BERT in Composer, and for example usage
|
| 33 |
+
of the core Mosaic BERT classes.
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
import copy
|
| 37 |
+
import logging
|
| 38 |
+
import math
|
| 39 |
+
import warnings
|
| 40 |
+
from typing import List, Optional, Tuple, Union
|
| 41 |
+
|
| 42 |
+
import torch
|
| 43 |
+
import torch.nn as nn
|
| 44 |
+
from einops import rearrange
|
| 45 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
| 46 |
+
from transformers.activations import ACT2FN
|
| 47 |
+
from transformers.modeling_outputs import (MaskedLMOutput,
|
| 48 |
+
SequenceClassifierOutput)
|
| 49 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel
|
| 50 |
+
|
| 51 |
+
from .bert_padding import (index_first_axis,
|
| 52 |
+
index_put_first_axis, pad_input,
|
| 53 |
+
unpad_input, unpad_input_only)
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
from .flash_attn_triton import flash_attn_qkvpacked_func
|
| 57 |
+
except ImportError as e:
|
| 58 |
+
flash_attn_qkvpacked_func = None
|
| 59 |
+
|
| 60 |
+
logger = logging.getLogger(__name__)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class BertEmbeddings(nn.Module):
|
| 64 |
+
"""Construct the embeddings for words, ignoring position.
|
| 65 |
+
|
| 66 |
+
There are no positional embeddings since we use ALiBi and token_type
|
| 67 |
+
embeddings.
|
| 68 |
+
|
| 69 |
+
This module is modeled after the Hugging Face BERT's
|
| 70 |
+
:class:`~transformers.model.bert.modeling_bert.BertEmbeddings`, but is
|
| 71 |
+
modified as part of Mosaic BERT's ALiBi implementation. The key change is
|
| 72 |
+
that position embeddings are removed. Position information instead comes
|
| 73 |
+
from attention biases that scale linearly with the position distance
|
| 74 |
+
between query and key tokens.
|
| 75 |
+
|
| 76 |
+
This module ignores the `position_ids` input to the `forward` method.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
def __init__(self, config):
|
| 80 |
+
super().__init__()
|
| 81 |
+
self.word_embeddings = nn.Embedding(config.vocab_size,
|
| 82 |
+
config.hidden_size,
|
| 83 |
+
padding_idx=config.pad_token_id)
|
| 84 |
+
# ALiBi doesn't use position embeddings
|
| 85 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size,
|
| 86 |
+
config.hidden_size)
|
| 87 |
+
|
| 88 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model
|
| 89 |
+
# variable name and be able to load any TensorFlow checkpoint file
|
| 90 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size,
|
| 91 |
+
eps=config.layer_norm_eps)
|
| 92 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 93 |
+
self.register_buffer('token_type_ids',
|
| 94 |
+
torch.zeros(config.max_position_embeddings,
|
| 95 |
+
dtype=torch.long),
|
| 96 |
+
persistent=False)
|
| 97 |
+
|
| 98 |
+
def forward(
|
| 99 |
+
self,
|
| 100 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 101 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 102 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 103 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 104 |
+
past_key_values_length: int = 0,
|
| 105 |
+
) -> torch.Tensor:
|
| 106 |
+
if (input_ids is not None) == (inputs_embeds is not None):
|
| 107 |
+
raise ValueError('Must specify either input_ids or input_embeds!')
|
| 108 |
+
if input_ids is not None:
|
| 109 |
+
input_shape = input_ids.size()
|
| 110 |
+
else:
|
| 111 |
+
assert inputs_embeds is not None # just for type checking
|
| 112 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 113 |
+
|
| 114 |
+
seq_length = input_shape[1]
|
| 115 |
+
|
| 116 |
+
if position_ids is None:
|
| 117 |
+
# great! ALiBi
|
| 118 |
+
pass
|
| 119 |
+
|
| 120 |
+
# Setting the token_type_ids to the registered buffer in constructor
|
| 121 |
+
# where it is all zeros, which usually occurs when it's auto-generated;
|
| 122 |
+
# registered buffer helps users when tracing the model without passing
|
| 123 |
+
# token_type_ids, solves issue #5664
|
| 124 |
+
if token_type_ids is None:
|
| 125 |
+
if hasattr(self, 'token_type_ids'):
|
| 126 |
+
assert isinstance(self.token_type_ids, torch.LongTensor)
|
| 127 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 128 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
| 129 |
+
input_shape[0], seq_length)
|
| 130 |
+
token_type_ids = buffered_token_type_ids_expanded # type: ignore
|
| 131 |
+
else:
|
| 132 |
+
token_type_ids = torch.zeros(input_shape, # type: ignore
|
| 133 |
+
dtype=torch.long,
|
| 134 |
+
device=self.word_embeddings.device) # type: ignore # yapf: disable
|
| 135 |
+
|
| 136 |
+
if inputs_embeds is None:
|
| 137 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 138 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 139 |
+
|
| 140 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 141 |
+
# no position embeddings! ALiBi
|
| 142 |
+
embeddings = self.LayerNorm(embeddings)
|
| 143 |
+
embeddings = self.dropout(embeddings)
|
| 144 |
+
return embeddings
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class BertUnpadSelfAttention(nn.Module):
|
| 148 |
+
"""Performs multi-headed self attention on a batch of unpadded sequences.
|
| 149 |
+
|
| 150 |
+
If Triton is installed, this module uses Flash Attention to greatly improve throughput.
|
| 151 |
+
The Flash Attention implementation used in Mosaic BERT supports arbitrary attention biases (which
|
| 152 |
+
we use to implement ALiBi), but does not support attention dropout. If either Triton is not installed
|
| 153 |
+
or `config.attention_probs_dropout_prob > 0`, the implementation will default to a
|
| 154 |
+
math-equivalent pytorch version, which is much slower.
|
| 155 |
+
|
| 156 |
+
See `forward` method for additional detail.
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
def __init__(self, config):
|
| 160 |
+
super().__init__()
|
| 161 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
| 162 |
+
config, 'embedding_size'):
|
| 163 |
+
raise ValueError(
|
| 164 |
+
f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention '
|
| 165 |
+
f'heads ({config.num_attention_heads})')
|
| 166 |
+
|
| 167 |
+
self.num_attention_heads = config.num_attention_heads
|
| 168 |
+
self.attention_head_size = int(config.hidden_size /
|
| 169 |
+
config.num_attention_heads)
|
| 170 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 171 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 172 |
+
self.p_dropout = config.attention_probs_dropout_prob
|
| 173 |
+
self.Wqkv = nn.Linear(self.all_head_size, 3 * config.hidden_size)
|
| 174 |
+
|
| 175 |
+
# Warn if defaulting to pytorch because of import issues
|
| 176 |
+
if flash_attn_qkvpacked_func is None:
|
| 177 |
+
warnings.warn(
|
| 178 |
+
'Unable to import Triton; defaulting MosaicBERT attention implementation to pytorch (this will reduce throughput when using this model).'
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
def forward(self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor,
|
| 182 |
+
max_seqlen_in_batch: int, indices: torch.Tensor,
|
| 183 |
+
attn_mask: torch.Tensor, bias: torch.Tensor) -> torch.Tensor:
|
| 184 |
+
"""Perform self-attention.
|
| 185 |
+
|
| 186 |
+
If dropout is zero, then we can use the Triton kernel, so we do that. However, if not, we send through a standard PyTorch
|
| 187 |
+
implementation of self-attention.
|
| 188 |
+
|
| 189 |
+
The arguments are unpadded, and our implementations of attention require padded arguments,
|
| 190 |
+
so we first call `pad_input`. Once we compute attention, we re-unpad our outputs for the other layers.
|
| 191 |
+
The pad/unpad operations add overhead, but not sending pad tokens through ffs saves compute.
|
| 192 |
+
It is possible to write an unpadded implementation of attention (in Triton and PyTorch), which we will eventually do.
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
hidden_states: (total_nnz, dim)
|
| 196 |
+
cu_seqlens: (batch + 1,)
|
| 197 |
+
max_seqlen_in_batch: int
|
| 198 |
+
indices: (total_nnz,)
|
| 199 |
+
attn_mask: (batch, max_seqlen_in_batch)
|
| 200 |
+
bias: (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
|
| 201 |
+
|
| 202 |
+
Returns:
|
| 203 |
+
attention: (total_nnz, dim)
|
| 204 |
+
"""
|
| 205 |
+
qkv = self.Wqkv(hidden_states)
|
| 206 |
+
qkv = pad_input(qkv, indices, cu_seqlens.shape[0] - 1,
|
| 207 |
+
max_seqlen_in_batch) # batch, max_seqlen_in_batch, thd
|
| 208 |
+
qkv = rearrange(qkv,
|
| 209 |
+
'b s (t h d) -> b s t h d',
|
| 210 |
+
t=3,
|
| 211 |
+
h=self.num_attention_heads)
|
| 212 |
+
if self.p_dropout or flash_attn_qkvpacked_func is None:
|
| 213 |
+
# if we have nonzero attention dropout (e.g. during fine-tuning) or no Triton, compute attention in PyTorch
|
| 214 |
+
q = qkv[:, :, 0, :, :].permute(0, 2, 1, 3) # b h s d
|
| 215 |
+
k = qkv[:, :, 1, :, :].permute(0, 2, 3, 1) # b h d s
|
| 216 |
+
v = qkv[:, :, 2, :, :].permute(0, 2, 1, 3) # b h s d
|
| 217 |
+
attention_scores = torch.matmul(q, k) / math.sqrt(
|
| 218 |
+
self.attention_head_size)
|
| 219 |
+
attention_scores = attention_scores + bias
|
| 220 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 221 |
+
attention_probs = self.dropout(attention_probs)
|
| 222 |
+
attention = torch.matmul(attention_probs, v).permute(0, 2, 1,
|
| 223 |
+
3) # b s h d
|
| 224 |
+
else:
|
| 225 |
+
# Triton implementation only supports 0 attention dropout
|
| 226 |
+
convert_dtype = qkv.dtype not in [torch.float16, torch.bfloat16]
|
| 227 |
+
if convert_dtype:
|
| 228 |
+
# Triton implementation only supports fp16 and bf16
|
| 229 |
+
orig_dtype = qkv.dtype
|
| 230 |
+
qkv = qkv.to(torch.float16)
|
| 231 |
+
bias_dtype = bias.dtype
|
| 232 |
+
bias = bias.to(torch.float16)
|
| 233 |
+
attention = flash_attn_qkvpacked_func(qkv, bias)
|
| 234 |
+
attention = attention.to(orig_dtype)
|
| 235 |
+
bias = bias.to(bias_dtype)
|
| 236 |
+
else:
|
| 237 |
+
attention = flash_attn_qkvpacked_func(qkv, bias)
|
| 238 |
+
|
| 239 |
+
# attn_mask is 1 for attend and 0 for don't
|
| 240 |
+
attention = unpad_input_only(attention, torch.squeeze(attn_mask) == 1)
|
| 241 |
+
return rearrange(attention, 'nnz h d -> nnz (h d)')
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
# Copy of transformer's library BertSelfOutput that will not be caught by surgery methods looking for HF BERT modules.
|
| 245 |
+
class BertSelfOutput(nn.Module):
|
| 246 |
+
"""Computes the output of the attention layer.
|
| 247 |
+
|
| 248 |
+
This module is modeled after the Hugging Face BERT's
|
| 249 |
+
:class:`~transformers.model.bert.modeling_bert.BertSelfOutput`.
|
| 250 |
+
The implementation is identical. Rather than use the original module
|
| 251 |
+
directly, we re-implement it here so that Mosaic BERT's modules will not
|
| 252 |
+
be affected by any Composer surgery algorithm that modifies Hugging Face
|
| 253 |
+
BERT modules.
|
| 254 |
+
"""
|
| 255 |
+
|
| 256 |
+
def __init__(self, config):
|
| 257 |
+
super().__init__()
|
| 258 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 259 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size,
|
| 260 |
+
eps=config.layer_norm_eps)
|
| 261 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 262 |
+
|
| 263 |
+
def forward(self, hidden_states: torch.Tensor,
|
| 264 |
+
input_tensor: torch.Tensor) -> torch.Tensor:
|
| 265 |
+
hidden_states = self.dense(hidden_states)
|
| 266 |
+
hidden_states = self.dropout(hidden_states)
|
| 267 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 268 |
+
return hidden_states
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class BertUnpadAttention(nn.Module):
|
| 272 |
+
"""Chains attention, Dropout, and LayerNorm for Mosaic BERT."""
|
| 273 |
+
|
| 274 |
+
def __init__(self, config):
|
| 275 |
+
super().__init__()
|
| 276 |
+
self.self = BertUnpadSelfAttention(config)
|
| 277 |
+
self.output = BertSelfOutput(config)
|
| 278 |
+
|
| 279 |
+
def forward(
|
| 280 |
+
self,
|
| 281 |
+
input_tensor: torch.Tensor,
|
| 282 |
+
cu_seqlens: torch.Tensor,
|
| 283 |
+
max_s: int,
|
| 284 |
+
subset_idx: Optional[torch.Tensor] = None,
|
| 285 |
+
indices: Optional[torch.Tensor] = None,
|
| 286 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 287 |
+
bias: Optional[torch.Tensor] = None,
|
| 288 |
+
) -> torch.Tensor:
|
| 289 |
+
"""Forward pass for scaled self-attention without padding.
|
| 290 |
+
|
| 291 |
+
Arguments:
|
| 292 |
+
input_tensor: (total_nnz, dim)
|
| 293 |
+
cu_seqlens: (batch + 1,)
|
| 294 |
+
max_s: int
|
| 295 |
+
subset_idx: () set of indices whose values we care about at the end of the layer
|
| 296 |
+
(e.g., the masked tokens, if this is the final layer).
|
| 297 |
+
indices: None or (total_nnz,)
|
| 298 |
+
attn_mask: None or (batch, max_seqlen_in_batch)
|
| 299 |
+
bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
|
| 300 |
+
"""
|
| 301 |
+
self_output = self.self(input_tensor, cu_seqlens, max_s, indices,
|
| 302 |
+
attn_mask, bias)
|
| 303 |
+
if subset_idx is not None:
|
| 304 |
+
return self.output(index_first_axis(self_output, subset_idx),
|
| 305 |
+
index_first_axis(input_tensor, subset_idx))
|
| 306 |
+
else:
|
| 307 |
+
return self.output(self_output, input_tensor)
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
class BertGatedLinearUnitMLP(nn.Module):
|
| 311 |
+
"""Applies the FFN at the end of each Mosaic BERT layer.
|
| 312 |
+
|
| 313 |
+
Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
|
| 314 |
+
and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality, but
|
| 315 |
+
introduces Gated Linear Units.
|
| 316 |
+
|
| 317 |
+
Note: Mosaic BERT adds parameters in order to implement Gated Linear Units. To keep parameter count consistent with that of a
|
| 318 |
+
standard Hugging Face BERT, scale down `config.intermediate_size` by 2/3. For example, a Mosaic BERT constructed with
|
| 319 |
+
`config.intermediate_size=2048` will have the same parameter footprint as its Hugging Face BERT counterpart constructed
|
| 320 |
+
with the `config.intermediate_size=3072`.
|
| 321 |
+
However, in most cases it will not be necessary to adjust `config.intermediate_size` since, despite the increased
|
| 322 |
+
parameter size, Mosaic BERT typically offers a net higher throughput than a Hugging Face BERT built from the same `config`.
|
| 323 |
+
"""
|
| 324 |
+
|
| 325 |
+
def __init__(self, config):
|
| 326 |
+
super().__init__()
|
| 327 |
+
self.config = config
|
| 328 |
+
self.gated_layers = nn.Linear(config.hidden_size,
|
| 329 |
+
config.intermediate_size * 2,
|
| 330 |
+
bias=False)
|
| 331 |
+
self.act = nn.GELU(approximate='none')
|
| 332 |
+
self.wo = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 333 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 334 |
+
self.layernorm = nn.LayerNorm(config.hidden_size,
|
| 335 |
+
eps=config.layer_norm_eps)
|
| 336 |
+
|
| 337 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 338 |
+
"""Compute new hidden states from current hidden states.
|
| 339 |
+
|
| 340 |
+
Args:
|
| 341 |
+
hidden_states (torch.Tensor): The (unpadded) hidden states from
|
| 342 |
+
the attention layer [nnz, dim].
|
| 343 |
+
"""
|
| 344 |
+
residual_connection = hidden_states
|
| 345 |
+
# compute the activation
|
| 346 |
+
hidden_states = self.gated_layers(hidden_states)
|
| 347 |
+
gated = hidden_states[:, :self.config.intermediate_size]
|
| 348 |
+
non_gated = hidden_states[:, self.config.intermediate_size:]
|
| 349 |
+
hidden_states = self.act(gated) * non_gated
|
| 350 |
+
hidden_states = self.dropout(hidden_states)
|
| 351 |
+
# multiply by the second matrix
|
| 352 |
+
hidden_states = self.wo(hidden_states)
|
| 353 |
+
# add the residual connection and post-LN
|
| 354 |
+
hidden_states = self.layernorm(hidden_states + residual_connection)
|
| 355 |
+
return hidden_states
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
class BertLayer(nn.Module):
|
| 359 |
+
"""Composes the Mosaic BERT attention and FFN blocks into a single layer."""
|
| 360 |
+
|
| 361 |
+
def __init__(self, config):
|
| 362 |
+
super(BertLayer, self).__init__()
|
| 363 |
+
self.attention = BertUnpadAttention(config)
|
| 364 |
+
self.mlp = BertGatedLinearUnitMLP(config)
|
| 365 |
+
|
| 366 |
+
def forward(
|
| 367 |
+
self,
|
| 368 |
+
hidden_states: torch.Tensor,
|
| 369 |
+
cu_seqlens: torch.Tensor,
|
| 370 |
+
seqlen: int,
|
| 371 |
+
subset_idx: Optional[torch.Tensor] = None,
|
| 372 |
+
indices: Optional[torch.Tensor] = None,
|
| 373 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 374 |
+
bias: Optional[torch.Tensor] = None,
|
| 375 |
+
) -> torch.Tensor:
|
| 376 |
+
"""Forward pass for a BERT layer, including both attention and MLP.
|
| 377 |
+
|
| 378 |
+
Args:
|
| 379 |
+
hidden_states: (total_nnz, dim)
|
| 380 |
+
cu_seqlens: (batch + 1,)
|
| 381 |
+
seqlen: int
|
| 382 |
+
subset_idx: () set of indices whose values we care about at the end of the layer
|
| 383 |
+
(e.g., the masked tokens, if this is the final layer).
|
| 384 |
+
indices: None or (total_nnz,)
|
| 385 |
+
attn_mask: None or (batch, max_seqlen_in_batch)
|
| 386 |
+
bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
|
| 387 |
+
"""
|
| 388 |
+
attention_output = self.attention(hidden_states, cu_seqlens, seqlen,
|
| 389 |
+
subset_idx, indices, attn_mask, bias)
|
| 390 |
+
layer_output = self.mlp(attention_output)
|
| 391 |
+
return layer_output
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
class BertEncoder(nn.Module):
|
| 395 |
+
"""A stack of BERT layers providing the backbone of Mosaic BERT.
|
| 396 |
+
|
| 397 |
+
This module is modeled after the Hugging Face BERT's :class:`~transformers.model.bert.modeling_bert.BertEncoder`,
|
| 398 |
+
but with substantial modifications to implement unpadding and ALiBi.
|
| 399 |
+
|
| 400 |
+
Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation
|
| 401 |
+
at padded tokens, and pre-computes attention biases to implement ALiBi.
|
| 402 |
+
"""
|
| 403 |
+
|
| 404 |
+
def __init__(self, config):
|
| 405 |
+
super().__init__()
|
| 406 |
+
layer = BertLayer(config)
|
| 407 |
+
self.layer = nn.ModuleList(
|
| 408 |
+
[copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
|
| 409 |
+
|
| 410 |
+
self.num_attention_heads = config.num_attention_heads
|
| 411 |
+
|
| 412 |
+
# The alibi mask will be dynamically expanded if it is too small for
|
| 413 |
+
# the input the model receives. But it generally helps to initialize it
|
| 414 |
+
# to a reasonably large size to help pre-allocate CUDA memory.
|
| 415 |
+
# The default `alibi_starting_size` is 512.
|
| 416 |
+
self._current_alibi_size = int(config.alibi_starting_size)
|
| 417 |
+
self.alibi = torch.zeros(
|
| 418 |
+
(1, self.num_attention_heads, self._current_alibi_size,
|
| 419 |
+
self._current_alibi_size))
|
| 420 |
+
self.rebuild_alibi_tensor(size=config.alibi_starting_size)
|
| 421 |
+
|
| 422 |
+
def rebuild_alibi_tensor(self,
|
| 423 |
+
size: int,
|
| 424 |
+
device: Optional[Union[torch.device, str]] = None):
|
| 425 |
+
# Alibi
|
| 426 |
+
# Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1)
|
| 427 |
+
# In the causal case, you can exploit the fact that softmax is invariant to a uniform translation
|
| 428 |
+
# of the logits, which makes the math work out *after* applying causal masking. If no causal masking
|
| 429 |
+
# will be applied, it is necessary to construct the diagonal mask.
|
| 430 |
+
n_heads = self.num_attention_heads
|
| 431 |
+
|
| 432 |
+
def _get_alibi_head_slopes(n_heads: int) -> List[float]:
|
| 433 |
+
|
| 434 |
+
def get_slopes_power_of_2(n_heads: int) -> List[float]:
|
| 435 |
+
start = (2**(-2**-(math.log2(n_heads) - 3)))
|
| 436 |
+
ratio = start
|
| 437 |
+
return [start * ratio**i for i in range(n_heads)]
|
| 438 |
+
|
| 439 |
+
# In the paper, they only train models that have 2^a heads for some a. This function
|
| 440 |
+
# has some good properties that only occur when the input is a power of 2. To
|
| 441 |
+
# maintain that even when the number of heads is not a power of 2, we use a
|
| 442 |
+
# workaround.
|
| 443 |
+
if math.log2(n_heads).is_integer():
|
| 444 |
+
return get_slopes_power_of_2(n_heads)
|
| 445 |
+
|
| 446 |
+
closest_power_of_2 = 2**math.floor(math.log2(n_heads))
|
| 447 |
+
slopes_a = get_slopes_power_of_2(closest_power_of_2)
|
| 448 |
+
slopes_b = _get_alibi_head_slopes(2 * closest_power_of_2)
|
| 449 |
+
slopes_b = slopes_b[0::2][:n_heads - closest_power_of_2]
|
| 450 |
+
return slopes_a + slopes_b
|
| 451 |
+
|
| 452 |
+
context_position = torch.arange(size, device=device)[:, None]
|
| 453 |
+
memory_position = torch.arange(size, device=device)[None, :]
|
| 454 |
+
relative_position = torch.abs(memory_position - context_position)
|
| 455 |
+
# [n_heads, max_token_length, max_token_length]
|
| 456 |
+
relative_position = relative_position.unsqueeze(0).expand(
|
| 457 |
+
n_heads, -1, -1)
|
| 458 |
+
slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device)
|
| 459 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * -relative_position
|
| 460 |
+
# [1, n_heads, max_token_length, max_token_length]
|
| 461 |
+
alibi = alibi.unsqueeze(0)
|
| 462 |
+
assert alibi.shape == torch.Size([1, n_heads, size, size])
|
| 463 |
+
|
| 464 |
+
self._current_alibi_size = size
|
| 465 |
+
self.alibi = alibi
|
| 466 |
+
|
| 467 |
+
def forward(
|
| 468 |
+
self,
|
| 469 |
+
hidden_states: torch.Tensor,
|
| 470 |
+
attention_mask: torch.Tensor,
|
| 471 |
+
output_all_encoded_layers: Optional[bool] = True,
|
| 472 |
+
subset_mask: Optional[torch.Tensor] = None,
|
| 473 |
+
) -> List[torch.Tensor]:
|
| 474 |
+
|
| 475 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 476 |
+
extended_attention_mask = extended_attention_mask.to(
|
| 477 |
+
dtype=next(self.parameters()).dtype) # fp16 compatibility
|
| 478 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
| 479 |
+
|
| 480 |
+
attention_mask_bool = attention_mask.bool()
|
| 481 |
+
batch, seqlen = hidden_states.shape[:2]
|
| 482 |
+
# Unpad inputs and mask. It will remove tokens that are padded.
|
| 483 |
+
# Assume ntokens is total number of tokens (padded and non-padded)
|
| 484 |
+
# and ntokens_unpad is total number of non-padded tokens.
|
| 485 |
+
# Then unpadding performs the following compression of the inputs:
|
| 486 |
+
# hidden_states[ntokens,hidden] -> hidden_states[ntokens_unpad,hidden]
|
| 487 |
+
hidden_states, indices, cu_seqlens, _ = unpad_input(
|
| 488 |
+
hidden_states, attention_mask_bool)
|
| 489 |
+
|
| 490 |
+
# Add alibi matrix to extended_attention_mask
|
| 491 |
+
if self._current_alibi_size < seqlen:
|
| 492 |
+
# Rebuild the alibi tensor when needed
|
| 493 |
+
warnings.warn(
|
| 494 |
+
f'Increasing alibi size from {self._current_alibi_size} to {seqlen}'
|
| 495 |
+
)
|
| 496 |
+
self.rebuild_alibi_tensor(size=seqlen, device=hidden_states.device)
|
| 497 |
+
elif self.alibi.device != hidden_states.device:
|
| 498 |
+
# Device catch-up
|
| 499 |
+
self.alibi = self.alibi.to(hidden_states.device)
|
| 500 |
+
alibi_bias = self.alibi[:, :, :seqlen, :seqlen]
|
| 501 |
+
attn_bias = extended_attention_mask[:, :, :seqlen, :seqlen]
|
| 502 |
+
alibi_attn_mask = attn_bias + alibi_bias
|
| 503 |
+
|
| 504 |
+
all_encoder_layers = []
|
| 505 |
+
if subset_mask is None:
|
| 506 |
+
for layer_module in self.layer:
|
| 507 |
+
hidden_states = layer_module(hidden_states,
|
| 508 |
+
cu_seqlens,
|
| 509 |
+
seqlen,
|
| 510 |
+
None,
|
| 511 |
+
indices,
|
| 512 |
+
attn_mask=attention_mask,
|
| 513 |
+
bias=alibi_attn_mask)
|
| 514 |
+
if output_all_encoded_layers:
|
| 515 |
+
all_encoder_layers.append(hidden_states)
|
| 516 |
+
# Pad inputs and mask. It will insert back zero-padded tokens.
|
| 517 |
+
# Assume ntokens is total number of tokens (padded and non-padded)
|
| 518 |
+
# and ntokens_unpad is total number of non-padded tokens.
|
| 519 |
+
# Then padding performs the following de-compression:
|
| 520 |
+
# hidden_states[ntokens_unpad,hidden] -> hidden_states[ntokens,hidden]
|
| 521 |
+
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
|
| 522 |
+
else:
|
| 523 |
+
for i in range(len(self.layer) - 1):
|
| 524 |
+
layer_module = self.layer[i]
|
| 525 |
+
hidden_states = layer_module(hidden_states,
|
| 526 |
+
cu_seqlens,
|
| 527 |
+
seqlen,
|
| 528 |
+
None,
|
| 529 |
+
indices,
|
| 530 |
+
attn_mask=attention_mask,
|
| 531 |
+
bias=alibi_attn_mask)
|
| 532 |
+
if output_all_encoded_layers:
|
| 533 |
+
all_encoder_layers.append(hidden_states)
|
| 534 |
+
subset_idx = torch.nonzero(subset_mask[attention_mask_bool],
|
| 535 |
+
as_tuple=False).flatten()
|
| 536 |
+
hidden_states = self.layer[-1](hidden_states,
|
| 537 |
+
cu_seqlens,
|
| 538 |
+
seqlen,
|
| 539 |
+
subset_idx=subset_idx,
|
| 540 |
+
indices=indices,
|
| 541 |
+
attn_mask=attention_mask,
|
| 542 |
+
bias=alibi_attn_mask)
|
| 543 |
+
|
| 544 |
+
if not output_all_encoded_layers:
|
| 545 |
+
all_encoder_layers.append(hidden_states)
|
| 546 |
+
return all_encoder_layers
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
class BertPooler(nn.Module):
|
| 550 |
+
|
| 551 |
+
def __init__(self, config):
|
| 552 |
+
super(BertPooler, self).__init__()
|
| 553 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 554 |
+
self.activation = nn.Tanh()
|
| 555 |
+
|
| 556 |
+
def forward(self,
|
| 557 |
+
hidden_states: torch.Tensor,
|
| 558 |
+
pool: Optional[bool] = True) -> torch.Tensor:
|
| 559 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 560 |
+
# to the first token.
|
| 561 |
+
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
| 562 |
+
pooled_output = self.dense(first_token_tensor)
|
| 563 |
+
pooled_output = self.activation(pooled_output)
|
| 564 |
+
return pooled_output
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
class BertPredictionHeadTransform(nn.Module):
|
| 568 |
+
|
| 569 |
+
def __init__(self, config):
|
| 570 |
+
super().__init__()
|
| 571 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 572 |
+
if isinstance(config.hidden_act, str):
|
| 573 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
| 574 |
+
else:
|
| 575 |
+
self.transform_act_fn = config.hidden_act
|
| 576 |
+
self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=1e-12)
|
| 577 |
+
|
| 578 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 579 |
+
hidden_states = self.dense(hidden_states)
|
| 580 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
| 581 |
+
hidden_states = self.LayerNorm(hidden_states)
|
| 582 |
+
return hidden_states
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
class BertModel(BertPreTrainedModel):
|
| 586 |
+
"""Overall BERT model.
|
| 587 |
+
|
| 588 |
+
Args:
|
| 589 |
+
config: a BertConfig class instance with the configuration to build a new model
|
| 590 |
+
|
| 591 |
+
Inputs:
|
| 592 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
| 593 |
+
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
| 594 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
| 595 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
| 596 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
| 597 |
+
a `sentence B` token (see BERT paper for more details).
|
| 598 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
| 599 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
| 600 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
| 601 |
+
a batch has varying length sentences.
|
| 602 |
+
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
| 603 |
+
|
| 604 |
+
Outputs: Tuple of (encoded_layers, pooled_output)
|
| 605 |
+
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
|
| 606 |
+
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
| 607 |
+
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
| 608 |
+
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
| 609 |
+
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
| 610 |
+
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
| 611 |
+
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
| 612 |
+
classifier pretrained on top of the hidden state associated to the first character of the
|
| 613 |
+
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
| 614 |
+
|
| 615 |
+
Example usage:
|
| 616 |
+
```python
|
| 617 |
+
# Already been converted into WordPiece token ids
|
| 618 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
| 619 |
+
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
| 620 |
+
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
| 621 |
+
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
| 622 |
+
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
| 623 |
+
model = BertModel(config=config)
|
| 624 |
+
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
| 625 |
+
```
|
| 626 |
+
"""
|
| 627 |
+
|
| 628 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 629 |
+
super(BertModel, self).__init__(config)
|
| 630 |
+
self.embeddings = BertEmbeddings(config)
|
| 631 |
+
self.encoder = BertEncoder(config)
|
| 632 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
| 633 |
+
self.post_init()
|
| 634 |
+
|
| 635 |
+
def get_input_embeddings(self):
|
| 636 |
+
return self.embeddings.word_embeddings
|
| 637 |
+
|
| 638 |
+
def set_input_embeddings(self, value):
|
| 639 |
+
self.embeddings.word_embeddings = value
|
| 640 |
+
|
| 641 |
+
def forward(
|
| 642 |
+
self,
|
| 643 |
+
input_ids: torch.Tensor,
|
| 644 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 645 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 646 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 647 |
+
output_all_encoded_layers: Optional[bool] = False,
|
| 648 |
+
masked_tokens_mask: Optional[torch.Tensor] = None,
|
| 649 |
+
**kwargs
|
| 650 |
+
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
|
| 651 |
+
if attention_mask is None:
|
| 652 |
+
attention_mask = torch.ones_like(input_ids)
|
| 653 |
+
if token_type_ids is None:
|
| 654 |
+
token_type_ids = torch.zeros_like(input_ids)
|
| 655 |
+
|
| 656 |
+
embedding_output = self.embeddings(input_ids, token_type_ids,
|
| 657 |
+
position_ids)
|
| 658 |
+
|
| 659 |
+
subset_mask = []
|
| 660 |
+
first_col_mask = []
|
| 661 |
+
|
| 662 |
+
if masked_tokens_mask is None:
|
| 663 |
+
subset_mask = None
|
| 664 |
+
else:
|
| 665 |
+
first_col_mask = torch.zeros_like(masked_tokens_mask)
|
| 666 |
+
first_col_mask[:, 0] = True
|
| 667 |
+
subset_mask = masked_tokens_mask | first_col_mask
|
| 668 |
+
|
| 669 |
+
encoder_outputs = self.encoder(
|
| 670 |
+
embedding_output,
|
| 671 |
+
attention_mask,
|
| 672 |
+
output_all_encoded_layers=output_all_encoded_layers,
|
| 673 |
+
subset_mask=subset_mask)
|
| 674 |
+
|
| 675 |
+
if masked_tokens_mask is None:
|
| 676 |
+
sequence_output = encoder_outputs[-1]
|
| 677 |
+
pooled_output = self.pooler(
|
| 678 |
+
sequence_output) if self.pooler is not None else None
|
| 679 |
+
else:
|
| 680 |
+
# TD [2022-03-01]: the indexing here is very tricky.
|
| 681 |
+
attention_mask_bool = attention_mask.bool()
|
| 682 |
+
subset_idx = subset_mask[attention_mask_bool] # type: ignore
|
| 683 |
+
sequence_output = encoder_outputs[-1][
|
| 684 |
+
masked_tokens_mask[attention_mask_bool][subset_idx]]
|
| 685 |
+
if self.pooler is not None:
|
| 686 |
+
pool_input = encoder_outputs[-1][
|
| 687 |
+
first_col_mask[attention_mask_bool][subset_idx]]
|
| 688 |
+
pooled_output = self.pooler(pool_input, pool=False)
|
| 689 |
+
else:
|
| 690 |
+
pooled_output = None
|
| 691 |
+
|
| 692 |
+
if not output_all_encoded_layers:
|
| 693 |
+
encoder_outputs = sequence_output
|
| 694 |
+
|
| 695 |
+
if self.pooler is not None:
|
| 696 |
+
return encoder_outputs, pooled_output
|
| 697 |
+
|
| 698 |
+
return encoder_outputs, None
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
###################
|
| 702 |
+
# Bert Heads
|
| 703 |
+
###################
|
| 704 |
+
class BertLMPredictionHead(nn.Module):
|
| 705 |
+
|
| 706 |
+
def __init__(self, config, bert_model_embedding_weights):
|
| 707 |
+
super().__init__()
|
| 708 |
+
self.transform = BertPredictionHeadTransform(config)
|
| 709 |
+
# The output weights are the same as the input embeddings, but there is
|
| 710 |
+
# an output-only bias for each token.
|
| 711 |
+
self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
|
| 712 |
+
bert_model_embedding_weights.size(0))
|
| 713 |
+
self.decoder.weight = bert_model_embedding_weights
|
| 714 |
+
|
| 715 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 716 |
+
hidden_states = self.transform(hidden_states)
|
| 717 |
+
hidden_states = self.decoder(hidden_states)
|
| 718 |
+
return hidden_states
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
class BertOnlyMLMHead(nn.Module):
|
| 722 |
+
|
| 723 |
+
def __init__(self, config, bert_model_embedding_weights):
|
| 724 |
+
super().__init__()
|
| 725 |
+
self.predictions = BertLMPredictionHead(config,
|
| 726 |
+
bert_model_embedding_weights)
|
| 727 |
+
|
| 728 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
| 729 |
+
prediction_scores = self.predictions(sequence_output)
|
| 730 |
+
return prediction_scores
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
class BertOnlyNSPHead(nn.Module):
|
| 734 |
+
|
| 735 |
+
def __init__(self, config):
|
| 736 |
+
super().__init__()
|
| 737 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
| 738 |
+
|
| 739 |
+
def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
|
| 740 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
| 741 |
+
return seq_relationship_score
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
#####################
|
| 745 |
+
# Various Bert models
|
| 746 |
+
#####################
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
class BertForPreTraining(BertPreTrainedModel):
|
| 750 |
+
#TBD: Coming in Future Commit
|
| 751 |
+
pass
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
| 755 |
+
#TBD: Coming in Future Commit
|
| 756 |
+
pass
|
| 757 |
+
|
| 758 |
+
|
| 759 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
| 760 |
+
|
| 761 |
+
def __init__(self, config):
|
| 762 |
+
super().__init__(config)
|
| 763 |
+
|
| 764 |
+
if config.is_decoder:
|
| 765 |
+
warnings.warn(
|
| 766 |
+
'If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for '
|
| 767 |
+
'bi-directional self-attention.')
|
| 768 |
+
|
| 769 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 770 |
+
self.cls = BertOnlyMLMHead(config,
|
| 771 |
+
self.bert.embeddings.word_embeddings.weight)
|
| 772 |
+
|
| 773 |
+
# Initialize weights and apply final processing
|
| 774 |
+
self.post_init()
|
| 775 |
+
|
| 776 |
+
@classmethod
|
| 777 |
+
def from_composer(cls,
|
| 778 |
+
pretrained_checkpoint,
|
| 779 |
+
state_dict=None,
|
| 780 |
+
cache_dir=None,
|
| 781 |
+
from_tf=False,
|
| 782 |
+
config=None,
|
| 783 |
+
*inputs,
|
| 784 |
+
**kwargs):
|
| 785 |
+
"""Load from pre-trained."""
|
| 786 |
+
model = cls(config, *inputs, **kwargs)
|
| 787 |
+
if from_tf:
|
| 788 |
+
raise ValueError(
|
| 789 |
+
'Mosaic BERT does not support loading TensorFlow weights.')
|
| 790 |
+
|
| 791 |
+
state_dict = torch.load(pretrained_checkpoint)
|
| 792 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
| 793 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix='model.')
|
| 794 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict,
|
| 795 |
+
strict=False)
|
| 796 |
+
|
| 797 |
+
if len(missing_keys) > 0:
|
| 798 |
+
logger.warning(
|
| 799 |
+
f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}"
|
| 800 |
+
)
|
| 801 |
+
if len(unexpected_keys) > 0:
|
| 802 |
+
logger.warning(
|
| 803 |
+
f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}"
|
| 804 |
+
)
|
| 805 |
+
|
| 806 |
+
return model
|
| 807 |
+
|
| 808 |
+
def get_output_embeddings(self):
|
| 809 |
+
return self.cls.predictions.decoder
|
| 810 |
+
|
| 811 |
+
def set_output_embeddings(self, new_embeddings):
|
| 812 |
+
self.cls.predictions.decoder = new_embeddings
|
| 813 |
+
|
| 814 |
+
def forward(
|
| 815 |
+
self,
|
| 816 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 817 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 818 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 819 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 820 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 821 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 822 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 823 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 824 |
+
labels: Optional[torch.Tensor] = None,
|
| 825 |
+
output_attentions: Optional[bool] = None,
|
| 826 |
+
output_hidden_states: Optional[bool] = None,
|
| 827 |
+
return_dict: Optional[bool] = None,
|
| 828 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 829 |
+
# labels should be a `torch.LongTensor` of shape
|
| 830 |
+
# `(batch_size, sequence_length)`. These are used for computing the
|
| 831 |
+
# masked language modeling loss.
|
| 832 |
+
#
|
| 833 |
+
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
|
| 834 |
+
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
| 835 |
+
# (masked), the loss is only computed for the tokens with labels in `[0,
|
| 836 |
+
# ..., config.vocab_size]`
|
| 837 |
+
#
|
| 838 |
+
# Prediction scores are only computed for masked tokens and the (bs,
|
| 839 |
+
# seqlen) dimensions are flattened
|
| 840 |
+
if (input_ids is not None) == (inputs_embeds is not None):
|
| 841 |
+
raise ValueError('Must specify either input_ids or input_embeds!')
|
| 842 |
+
|
| 843 |
+
if labels is None:
|
| 844 |
+
masked_tokens_mask = None
|
| 845 |
+
else:
|
| 846 |
+
masked_tokens_mask = labels > 0
|
| 847 |
+
|
| 848 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 849 |
+
|
| 850 |
+
outputs = self.bert(
|
| 851 |
+
input_ids,
|
| 852 |
+
attention_mask=attention_mask,
|
| 853 |
+
token_type_ids=token_type_ids,
|
| 854 |
+
position_ids=position_ids,
|
| 855 |
+
head_mask=head_mask,
|
| 856 |
+
inputs_embeds=inputs_embeds,
|
| 857 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 858 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 859 |
+
output_attentions=output_attentions,
|
| 860 |
+
output_hidden_states=output_hidden_states,
|
| 861 |
+
return_dict=return_dict,
|
| 862 |
+
masked_tokens_mask=masked_tokens_mask,
|
| 863 |
+
)
|
| 864 |
+
|
| 865 |
+
sequence_output = outputs[0]
|
| 866 |
+
prediction_scores = self.cls(sequence_output)
|
| 867 |
+
|
| 868 |
+
loss = None
|
| 869 |
+
if labels is not None:
|
| 870 |
+
# Compute loss
|
| 871 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 872 |
+
masked_token_idx = torch.nonzero(labels.flatten() > 0,
|
| 873 |
+
as_tuple=False).flatten()
|
| 874 |
+
loss = loss_fct(prediction_scores,
|
| 875 |
+
labels.flatten()[masked_token_idx])
|
| 876 |
+
|
| 877 |
+
assert input_ids is not None, 'Coding error; please open an issue'
|
| 878 |
+
batch, seqlen = input_ids.shape[:2]
|
| 879 |
+
prediction_scores = rearrange(index_put_first_axis(
|
| 880 |
+
prediction_scores, masked_token_idx, batch * seqlen),
|
| 881 |
+
'(b s) d -> b s d',
|
| 882 |
+
b=batch)
|
| 883 |
+
|
| 884 |
+
if not return_dict:
|
| 885 |
+
output = (prediction_scores,) + outputs[2:]
|
| 886 |
+
return ((loss,) + output) if loss is not None else output
|
| 887 |
+
|
| 888 |
+
return MaskedLMOutput(
|
| 889 |
+
loss=loss,
|
| 890 |
+
logits=prediction_scores,
|
| 891 |
+
hidden_states=None,
|
| 892 |
+
attentions=None,
|
| 893 |
+
)
|
| 894 |
+
|
| 895 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor,
|
| 896 |
+
attention_mask: torch.Tensor,
|
| 897 |
+
**model_kwargs):
|
| 898 |
+
input_shape = input_ids.shape
|
| 899 |
+
effective_batch_size = input_shape[0]
|
| 900 |
+
|
| 901 |
+
# add a dummy token
|
| 902 |
+
if self.config.pad_token_id is None:
|
| 903 |
+
raise ValueError('The PAD token should be defined for generation')
|
| 904 |
+
|
| 905 |
+
attention_mask = torch.cat([
|
| 906 |
+
attention_mask,
|
| 907 |
+
attention_mask.new_zeros((attention_mask.shape[0], 1))
|
| 908 |
+
],
|
| 909 |
+
dim=-1)
|
| 910 |
+
dummy_token = torch.full((effective_batch_size, 1),
|
| 911 |
+
self.config.pad_token_id,
|
| 912 |
+
dtype=torch.long,
|
| 913 |
+
device=input_ids.device)
|
| 914 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
| 915 |
+
|
| 916 |
+
return {'input_ids': input_ids, 'attention_mask': attention_mask}
|
| 917 |
+
|
| 918 |
+
|
| 919 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
| 920 |
+
#TBD: Push in future commit
|
| 921 |
+
pass
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
| 925 |
+
"""Bert Model transformer with a sequence classification/regression head.
|
| 926 |
+
|
| 927 |
+
This head is just a linear layer on top of the pooled output. Used for,
|
| 928 |
+
e.g., GLUE tasks.
|
| 929 |
+
"""
|
| 930 |
+
|
| 931 |
+
def __init__(self, config):
|
| 932 |
+
super().__init__(config)
|
| 933 |
+
self.num_labels = config.num_labels
|
| 934 |
+
self.config = config
|
| 935 |
+
|
| 936 |
+
self.bert = BertModel(config)
|
| 937 |
+
classifier_dropout = (config.classifier_dropout
|
| 938 |
+
if config.classifier_dropout is not None else
|
| 939 |
+
config.hidden_dropout_prob)
|
| 940 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 941 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 942 |
+
|
| 943 |
+
# Initialize weights and apply final processing
|
| 944 |
+
self.post_init()
|
| 945 |
+
|
| 946 |
+
@classmethod
|
| 947 |
+
def from_composer(cls,
|
| 948 |
+
pretrained_checkpoint,
|
| 949 |
+
state_dict=None,
|
| 950 |
+
cache_dir=None,
|
| 951 |
+
from_tf=False,
|
| 952 |
+
config=None,
|
| 953 |
+
*inputs,
|
| 954 |
+
**kwargs):
|
| 955 |
+
"""Load from pre-trained."""
|
| 956 |
+
model = cls(config, *inputs, **kwargs)
|
| 957 |
+
if from_tf:
|
| 958 |
+
raise ValueError(
|
| 959 |
+
'Mosaic BERT does not support loading TensorFlow weights.')
|
| 960 |
+
|
| 961 |
+
state_dict = torch.load(pretrained_checkpoint)
|
| 962 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
| 963 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix='model.')
|
| 964 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict,
|
| 965 |
+
strict=False)
|
| 966 |
+
|
| 967 |
+
if len(missing_keys) > 0:
|
| 968 |
+
logger.warning(
|
| 969 |
+
f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}"
|
| 970 |
+
)
|
| 971 |
+
if len(unexpected_keys) > 0:
|
| 972 |
+
logger.warning(
|
| 973 |
+
f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}"
|
| 974 |
+
)
|
| 975 |
+
|
| 976 |
+
return model
|
| 977 |
+
|
| 978 |
+
def forward(
|
| 979 |
+
self,
|
| 980 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 981 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 982 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 983 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 984 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 985 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 986 |
+
labels: Optional[torch.Tensor] = None,
|
| 987 |
+
output_attentions: Optional[bool] = None,
|
| 988 |
+
output_hidden_states: Optional[bool] = None,
|
| 989 |
+
return_dict: Optional[bool] = None,
|
| 990 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 991 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 992 |
+
# Labels for computing the sequence classification/regression loss.
|
| 993 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 994 |
+
# If `config.num_labels == 1` a regression loss is computed
|
| 995 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
| 996 |
+
# is computed (cross-entropy).
|
| 997 |
+
|
| 998 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 999 |
+
|
| 1000 |
+
outputs = self.bert(
|
| 1001 |
+
input_ids,
|
| 1002 |
+
attention_mask=attention_mask,
|
| 1003 |
+
token_type_ids=token_type_ids,
|
| 1004 |
+
position_ids=position_ids,
|
| 1005 |
+
head_mask=head_mask,
|
| 1006 |
+
inputs_embeds=inputs_embeds,
|
| 1007 |
+
output_attentions=output_attentions,
|
| 1008 |
+
output_hidden_states=output_hidden_states,
|
| 1009 |
+
return_dict=return_dict,
|
| 1010 |
+
)
|
| 1011 |
+
|
| 1012 |
+
pooled_output = outputs[1]
|
| 1013 |
+
|
| 1014 |
+
pooled_output = self.dropout(pooled_output)
|
| 1015 |
+
logits = self.classifier(pooled_output)
|
| 1016 |
+
|
| 1017 |
+
loss = None
|
| 1018 |
+
if labels is not None:
|
| 1019 |
+
# Compute loss
|
| 1020 |
+
if self.config.problem_type is None:
|
| 1021 |
+
if self.num_labels == 1:
|
| 1022 |
+
self.config.problem_type = 'regression'
|
| 1023 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or
|
| 1024 |
+
labels.dtype == torch.int):
|
| 1025 |
+
self.config.problem_type = 'single_label_classification'
|
| 1026 |
+
else:
|
| 1027 |
+
self.config.problem_type = 'multi_label_classification'
|
| 1028 |
+
|
| 1029 |
+
if self.config.problem_type == 'regression':
|
| 1030 |
+
loss_fct = nn.MSELoss()
|
| 1031 |
+
if self.num_labels == 1:
|
| 1032 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1033 |
+
else:
|
| 1034 |
+
loss = loss_fct(logits, labels)
|
| 1035 |
+
elif self.config.problem_type == 'single_label_classification':
|
| 1036 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1037 |
+
loss = loss_fct(logits.view(-1, self.num_labels),
|
| 1038 |
+
labels.view(-1))
|
| 1039 |
+
elif self.config.problem_type == 'multi_label_classification':
|
| 1040 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 1041 |
+
loss = loss_fct(logits, labels)
|
| 1042 |
+
|
| 1043 |
+
if not return_dict:
|
| 1044 |
+
output = (logits,) + outputs[2:]
|
| 1045 |
+
return ((loss,) + output) if loss is not None else output
|
| 1046 |
+
|
| 1047 |
+
return SequenceClassifierOutput(
|
| 1048 |
+
loss=loss,
|
| 1049 |
+
logits=logits,
|
| 1050 |
+
hidden_states=None,
|
| 1051 |
+
attentions=None,
|
| 1052 |
+
)
|
| 1053 |
+
|
| 1054 |
+
|
| 1055 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
| 1056 |
+
#TBD: Push in future commit
|
| 1057 |
+
pass
|
| 1058 |
+
|
| 1059 |
+
|
| 1060 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
| 1061 |
+
#TBD: Push in future commit
|
| 1062 |
+
pass
|
| 1063 |
+
|
| 1064 |
+
|
| 1065 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
| 1066 |
+
"""Bert Model with a span classification head.
|
| 1067 |
+
|
| 1068 |
+
This is used for extractive question-answering tasks like SQuAD (a linear
|
| 1069 |
+
layers on top of the hidden states' output to compute `span start logits`
|
| 1070 |
+
and `span end logits`).
|
| 1071 |
+
"""
|
| 1072 |
+
#TBD: Push in future commit
|
bert_padding.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 MosaicML Examples authors
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
|
| 5 |
+
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
| 6 |
+
|
| 7 |
+
"""Helper functions for padding and unpadding batches.
|
| 8 |
+
|
| 9 |
+
These functions are used extensively throughout the Mosaic BERT implementation
|
| 10 |
+
in `bert_layers.py`.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
from typing import Tuple, cast
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from einops import rearrange, repeat
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class IndexFirstAxis(torch.autograd.Function):
|
| 21 |
+
|
| 22 |
+
@staticmethod
|
| 23 |
+
def forward(ctx, input: torch.Tensor,
|
| 24 |
+
indices: torch.Tensor) -> torch.Tensor:
|
| 25 |
+
"""Get just the values of `input` which are at `indices`.
|
| 26 |
+
|
| 27 |
+
Arguments:
|
| 28 |
+
ctx: the autograd context object
|
| 29 |
+
input: (b, ...) 2+ dimensional tensor
|
| 30 |
+
indices: (num_idx) 1D tensor
|
| 31 |
+
"""
|
| 32 |
+
ctx.save_for_backward(indices)
|
| 33 |
+
assert input.ndim >= 2
|
| 34 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[
|
| 35 |
+
1:] # type: ignore
|
| 36 |
+
second_dim = other_shape.numel(
|
| 37 |
+
) # product of sizes of all but first dimension
|
| 38 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
| 39 |
+
return torch.gather(
|
| 40 |
+
rearrange(input, 'b ... -> b (...)'), # (b, ...) -> (b, second_dim)
|
| 41 |
+
0,
|
| 42 |
+
repeat(indices, 'z -> z d',
|
| 43 |
+
d=second_dim) # (indices,) -> (indices, second_dim)
|
| 44 |
+
).reshape(-1, *other_shape) # (num_idx, ...)
|
| 45 |
+
|
| 46 |
+
@staticmethod
|
| 47 |
+
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]:
|
| 48 |
+
indices, = ctx.saved_tensors
|
| 49 |
+
assert grad_output.ndim >= 2
|
| 50 |
+
other_shape = grad_output.shape[1:]
|
| 51 |
+
grad_output = rearrange(grad_output, 'b ... -> b (...)')
|
| 52 |
+
grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]],
|
| 53 |
+
device=grad_output.device,
|
| 54 |
+
dtype=grad_output.dtype)
|
| 55 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
| 56 |
+
# grad_input[indices] = grad_output
|
| 57 |
+
grad_input.scatter_(0,
|
| 58 |
+
repeat(indices, 'z -> z d', d=grad_output.shape[1]),
|
| 59 |
+
grad_output)
|
| 60 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
index_first_axis = IndexFirstAxis.apply
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class IndexPutFirstAxis(torch.autograd.Function):
|
| 67 |
+
|
| 68 |
+
@staticmethod
|
| 69 |
+
def forward(ctx, values: torch.Tensor, indices: torch.Tensor,
|
| 70 |
+
first_axis_dim) -> torch.Tensor:
|
| 71 |
+
ctx.save_for_backward(indices)
|
| 72 |
+
assert indices.ndim == 1
|
| 73 |
+
assert values.ndim >= 2
|
| 74 |
+
output = torch.zeros(first_axis_dim,
|
| 75 |
+
*values.shape[1:],
|
| 76 |
+
device=values.device,
|
| 77 |
+
dtype=values.dtype)
|
| 78 |
+
output[indices] = values
|
| 79 |
+
return output
|
| 80 |
+
|
| 81 |
+
@staticmethod
|
| 82 |
+
def backward(ctx,
|
| 83 |
+
grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
|
| 84 |
+
indices, = ctx.saved_tensors
|
| 85 |
+
grad_values = grad_output[indices]
|
| 86 |
+
return grad_values, None, None
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
index_put_first_axis = IndexPutFirstAxis.apply
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def unpad_input(
|
| 93 |
+
hidden_states: torch.Tensor,
|
| 94 |
+
attention_mask: torch.Tensor,
|
| 95 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
| 96 |
+
"""Remove padding from input sequences.
|
| 97 |
+
|
| 98 |
+
Arguments:
|
| 99 |
+
hidden_states: (batch, seqlen, ...)
|
| 100 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
| 101 |
+
|
| 102 |
+
Returns:
|
| 103 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
| 104 |
+
indices: (total_nnz)
|
| 105 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
| 106 |
+
max_seqlen_in_batch: int ()
|
| 107 |
+
"""
|
| 108 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 109 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 110 |
+
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
|
| 111 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32),
|
| 112 |
+
(1, 0))
|
| 113 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
| 114 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
| 115 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
| 116 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
| 117 |
+
# so we write custom forward and backward to make it a bit faster.
|
| 118 |
+
hidden_states = cast(
|
| 119 |
+
torch.Tensor,
|
| 120 |
+
index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'),
|
| 121 |
+
indices))
|
| 122 |
+
return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def unpad_input_only(
|
| 126 |
+
hidden_states: torch.Tensor,
|
| 127 |
+
attention_mask: torch.Tensor,
|
| 128 |
+
) -> torch.Tensor:
|
| 129 |
+
"""Like unpad_input, but only return the unpadded first tensor.
|
| 130 |
+
|
| 131 |
+
Save a small amount of overhead.
|
| 132 |
+
|
| 133 |
+
Arguments:
|
| 134 |
+
hidden_states: (batch, seqlen, ...)
|
| 135 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
| 136 |
+
|
| 137 |
+
Returns:
|
| 138 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
| 139 |
+
"""
|
| 140 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 141 |
+
return index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'),
|
| 142 |
+
indices)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def pad_input(hidden_states: torch.Tensor, indices: torch.Tensor, batch: int,
|
| 146 |
+
seqlen: int) -> torch.Tensor:
|
| 147 |
+
"""Add padding to sequences.
|
| 148 |
+
|
| 149 |
+
Arguments:
|
| 150 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
| 151 |
+
indices: (total_nnz)
|
| 152 |
+
batch: int batch_size
|
| 153 |
+
seqlen: int max sequence length
|
| 154 |
+
|
| 155 |
+
Returns:
|
| 156 |
+
hidden_states: (batch, seqlen, ...)
|
| 157 |
+
"""
|
| 158 |
+
output = index_put_first_axis(hidden_states, indices, batch * seqlen)
|
| 159 |
+
return rearrange(output, '(b s) ... -> b s ...', b=batch)
|
config.json
CHANGED
|
@@ -6,8 +6,9 @@
|
|
| 6 |
],
|
| 7 |
"attention_probs_dropout_prob": 0.0,
|
| 8 |
"auto_map": {
|
| 9 |
-
"AutoConfig": "
|
| 10 |
-
"AutoModelForMaskedLM": "
|
|
|
|
| 11 |
},
|
| 12 |
"classifier_dropout": null,
|
| 13 |
"gradient_checkpointing": false,
|
|
|
|
| 6 |
],
|
| 7 |
"attention_probs_dropout_prob": 0.0,
|
| 8 |
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_bert.BertConfig",
|
| 10 |
+
"AutoModelForMaskedLM": "bert_layers.BertForMaskedLM",
|
| 11 |
+
"AutoModel": "bert_layers.BertModel"
|
| 12 |
},
|
| 13 |
"classifier_dropout": null,
|
| 14 |
"gradient_checkpointing": false,
|
configuration_bert.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 MosaicML Examples authors
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
from transformers import BertConfig as TransformersBertConfig
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class BertConfig(TransformersBertConfig):
|
| 8 |
+
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
alibi_starting_size: int = 512,
|
| 12 |
+
attention_probs_dropout_prob: float = 0.0,
|
| 13 |
+
**kwargs,
|
| 14 |
+
):
|
| 15 |
+
"""Configuration class for MosaicBert.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
alibi_starting_size (int): Use `alibi_starting_size` to determine how large of an alibi tensor to
|
| 19 |
+
create when initializing the model. You should be able to ignore this parameter in most cases.
|
| 20 |
+
Defaults to 512.
|
| 21 |
+
attention_probs_dropout_prob (float): By default, turn off attention dropout in Mosaic BERT
|
| 22 |
+
(otherwise, Flash Attention will be off by default). Defaults to 0.0.
|
| 23 |
+
"""
|
| 24 |
+
super().__init__(attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs)
|
| 25 |
+
self.alibi_starting_size = alibi_starting_size
|
flash_attn_triton.py
ADDED
|
@@ -0,0 +1,1160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
*Experimental* implementation of FlashAttention in Triton.
|
| 3 |
+
Tested with triton==2.0.0.dev20221202.
|
| 4 |
+
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
|
| 5 |
+
other than 64:
|
| 6 |
+
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
|
| 7 |
+
We'll update this implementation with the new Triton backend once this is fixed.
|
| 8 |
+
|
| 9 |
+
We use the FlashAttention implementation from Phil Tillet a starting point.
|
| 10 |
+
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
| 11 |
+
|
| 12 |
+
Changes:
|
| 13 |
+
- Implement both causal and non-causal attention.
|
| 14 |
+
- Implement both self-attention and cross-attention.
|
| 15 |
+
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
|
| 16 |
+
- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
|
| 17 |
+
- Support attention bias.
|
| 18 |
+
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
|
| 19 |
+
- Make the backward for d=128 much faster by reducing register spilling.
|
| 20 |
+
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
|
| 21 |
+
small batch size * nheads.
|
| 22 |
+
|
| 23 |
+
Caution:
|
| 24 |
+
- This is an *experimental* implementation. The forward pass should be quite robust but
|
| 25 |
+
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
| 26 |
+
- This implementation has only been tested on A100.
|
| 27 |
+
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
| 28 |
+
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
| 29 |
+
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
| 30 |
+
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
| 31 |
+
that there are none left for other head dimensions.
|
| 32 |
+
|
| 33 |
+
Differences between this Triton version and the CUDA version:
|
| 34 |
+
- Triton version doesn't support dropout.
|
| 35 |
+
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
| 36 |
+
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
|
| 37 |
+
than CUDA forward + backward.
|
| 38 |
+
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
| 39 |
+
- Triton version supports attention bias, while CUDA version doesn't.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
import math
|
| 43 |
+
|
| 44 |
+
import torch
|
| 45 |
+
import triton
|
| 46 |
+
import triton.language as tl
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128
|
| 50 |
+
# @triton.autotune(
|
| 51 |
+
# configs=[
|
| 52 |
+
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1),
|
| 53 |
+
# # This config has a race condition when EVEN_M == False, disabling it for now.
|
| 54 |
+
# # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
|
| 55 |
+
# ],
|
| 56 |
+
# key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM']
|
| 57 |
+
# )
|
| 58 |
+
@triton.heuristics(
|
| 59 |
+
{
|
| 60 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
| 61 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
| 62 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
| 63 |
+
}
|
| 64 |
+
)
|
| 65 |
+
@triton.jit
|
| 66 |
+
def _fwd_kernel(
|
| 67 |
+
Q,
|
| 68 |
+
K,
|
| 69 |
+
V,
|
| 70 |
+
Bias,
|
| 71 |
+
Out,
|
| 72 |
+
Lse,
|
| 73 |
+
TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
| 74 |
+
softmax_scale,
|
| 75 |
+
stride_qb,
|
| 76 |
+
stride_qh,
|
| 77 |
+
stride_qm,
|
| 78 |
+
stride_kb,
|
| 79 |
+
stride_kh,
|
| 80 |
+
stride_kn,
|
| 81 |
+
stride_vb,
|
| 82 |
+
stride_vh,
|
| 83 |
+
stride_vn,
|
| 84 |
+
stride_bb,
|
| 85 |
+
stride_bh,
|
| 86 |
+
stride_bm,
|
| 87 |
+
stride_ob,
|
| 88 |
+
stride_oh,
|
| 89 |
+
stride_om,
|
| 90 |
+
nheads,
|
| 91 |
+
seqlen_q,
|
| 92 |
+
seqlen_k,
|
| 93 |
+
seqlen_q_rounded,
|
| 94 |
+
headdim,
|
| 95 |
+
CACHE_KEY_SEQLEN_Q,
|
| 96 |
+
CACHE_KEY_SEQLEN_K,
|
| 97 |
+
BIAS_TYPE: tl.constexpr,
|
| 98 |
+
IS_CAUSAL: tl.constexpr,
|
| 99 |
+
BLOCK_HEADDIM: tl.constexpr,
|
| 100 |
+
EVEN_M: tl.constexpr,
|
| 101 |
+
EVEN_N: tl.constexpr,
|
| 102 |
+
EVEN_HEADDIM: tl.constexpr,
|
| 103 |
+
BLOCK_M: tl.constexpr,
|
| 104 |
+
BLOCK_N: tl.constexpr,
|
| 105 |
+
):
|
| 106 |
+
start_m = tl.program_id(0)
|
| 107 |
+
off_hb = tl.program_id(1)
|
| 108 |
+
off_b = off_hb // nheads
|
| 109 |
+
off_h = off_hb % nheads
|
| 110 |
+
# off_b = tl.program_id(1)
|
| 111 |
+
# off_h = tl.program_id(2)
|
| 112 |
+
# off_hb = off_b * nheads + off_h
|
| 113 |
+
# initialize offsets
|
| 114 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 115 |
+
offs_n = tl.arange(0, BLOCK_N)
|
| 116 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 117 |
+
# Initialize pointers to Q, K, V
|
| 118 |
+
# Adding parenthesis around indexing might use int32 math instead of int64 math?
|
| 119 |
+
# https://github.com/openai/triton/issues/741
|
| 120 |
+
# I'm seeing a tiny bit of difference (5-7us)
|
| 121 |
+
q_ptrs = (
|
| 122 |
+
Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
|
| 123 |
+
)
|
| 124 |
+
k_ptrs = (
|
| 125 |
+
K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
| 126 |
+
)
|
| 127 |
+
v_ptrs = (
|
| 128 |
+
V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
| 129 |
+
)
|
| 130 |
+
if BIAS_TYPE == "vector":
|
| 131 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
| 132 |
+
elif BIAS_TYPE == "matrix":
|
| 133 |
+
b_ptrs = (
|
| 134 |
+
Bias
|
| 135 |
+
+ off_b * stride_bb
|
| 136 |
+
+ off_h * stride_bh
|
| 137 |
+
+ (offs_m[:, None] * stride_bm + offs_n[None, :])
|
| 138 |
+
)
|
| 139 |
+
# initialize pointer to m and l
|
| 140 |
+
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
| 141 |
+
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
| 142 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
| 143 |
+
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
| 144 |
+
# load q: it will stay in SRAM throughout
|
| 145 |
+
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
|
| 146 |
+
# tl.load(q_ptrs), we get the wrong output!
|
| 147 |
+
if EVEN_M & EVEN_N:
|
| 148 |
+
if EVEN_HEADDIM:
|
| 149 |
+
q = tl.load(q_ptrs)
|
| 150 |
+
else:
|
| 151 |
+
q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 152 |
+
else:
|
| 153 |
+
if EVEN_HEADDIM:
|
| 154 |
+
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
| 155 |
+
else:
|
| 156 |
+
q = tl.load(
|
| 157 |
+
q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0
|
| 158 |
+
)
|
| 159 |
+
# loop over k, v and update accumulator
|
| 160 |
+
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
| 161 |
+
for start_n in range(0, end_n, BLOCK_N):
|
| 162 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
| 163 |
+
# -- compute qk ----
|
| 164 |
+
if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
|
| 165 |
+
if EVEN_HEADDIM:
|
| 166 |
+
k = tl.load(k_ptrs + start_n * stride_kn)
|
| 167 |
+
else:
|
| 168 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
|
| 169 |
+
else:
|
| 170 |
+
if EVEN_HEADDIM:
|
| 171 |
+
k = tl.load(
|
| 172 |
+
k_ptrs + start_n * stride_kn,
|
| 173 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
| 174 |
+
other=0.0,
|
| 175 |
+
)
|
| 176 |
+
else:
|
| 177 |
+
k = tl.load(
|
| 178 |
+
k_ptrs + start_n * stride_kn,
|
| 179 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
| 180 |
+
other=0.0,
|
| 181 |
+
)
|
| 182 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
| 183 |
+
qk += tl.dot(q, k, trans_b=True)
|
| 184 |
+
# Trying to combine the two masks seem to make the result wrong
|
| 185 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
| 186 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
|
| 187 |
+
if IS_CAUSAL:
|
| 188 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
| 189 |
+
if BIAS_TYPE != "none":
|
| 190 |
+
if BIAS_TYPE == "vector":
|
| 191 |
+
if EVEN_N:
|
| 192 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
| 193 |
+
else:
|
| 194 |
+
bias = tl.load(
|
| 195 |
+
b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0
|
| 196 |
+
).to(tl.float32)
|
| 197 |
+
bias = bias[None, :]
|
| 198 |
+
elif BIAS_TYPE == "matrix":
|
| 199 |
+
if EVEN_M & EVEN_N:
|
| 200 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
| 201 |
+
else:
|
| 202 |
+
bias = tl.load(
|
| 203 |
+
b_ptrs + start_n,
|
| 204 |
+
mask=(offs_m[:, None] < seqlen_q)
|
| 205 |
+
& ((start_n + offs_n)[None, :] < seqlen_k),
|
| 206 |
+
other=0.0,
|
| 207 |
+
).to(tl.float32)
|
| 208 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
| 209 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
| 210 |
+
# to multiply with softmax_scale here.
|
| 211 |
+
qk = qk * softmax_scale + bias
|
| 212 |
+
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
| 213 |
+
p = tl.exp(qk - m_ij[:, None])
|
| 214 |
+
else:
|
| 215 |
+
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
|
| 216 |
+
p = tl.exp(qk * softmax_scale - m_ij[:, None])
|
| 217 |
+
l_ij = tl.sum(p, 1)
|
| 218 |
+
|
| 219 |
+
# scale acc_o
|
| 220 |
+
acc_o_scale = tl.exp(m_i - m_ij)
|
| 221 |
+
|
| 222 |
+
# # -- update output accumulator --
|
| 223 |
+
# BUG: have to store and immediately load
|
| 224 |
+
tl.store(t_ptrs, acc_o_scale)
|
| 225 |
+
acc_o_scale = tl.load(t_ptrs)
|
| 226 |
+
acc_o = acc_o * acc_o_scale[:, None]
|
| 227 |
+
# update acc_o
|
| 228 |
+
if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
|
| 229 |
+
if EVEN_HEADDIM:
|
| 230 |
+
v = tl.load(v_ptrs + start_n * stride_vn)
|
| 231 |
+
else:
|
| 232 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
|
| 233 |
+
else:
|
| 234 |
+
if EVEN_HEADDIM:
|
| 235 |
+
v = tl.load(
|
| 236 |
+
v_ptrs + start_n * stride_vn,
|
| 237 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
| 238 |
+
other=0.0,
|
| 239 |
+
)
|
| 240 |
+
else:
|
| 241 |
+
v = tl.load(
|
| 242 |
+
v_ptrs + start_n * stride_vn,
|
| 243 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
| 244 |
+
other=0.0,
|
| 245 |
+
)
|
| 246 |
+
p = p.to(v.dtype)
|
| 247 |
+
acc_o += tl.dot(p, v)
|
| 248 |
+
|
| 249 |
+
# -- update statistics
|
| 250 |
+
m_i = m_ij
|
| 251 |
+
l_i_new = tl.exp(lse_i - m_ij) + l_ij
|
| 252 |
+
lse_i = m_ij + tl.log(l_i_new)
|
| 253 |
+
|
| 254 |
+
o_scale = tl.exp(m_i - lse_i)
|
| 255 |
+
# BUG: have to store and immediately load
|
| 256 |
+
tl.store(t_ptrs, o_scale)
|
| 257 |
+
o_scale = tl.load(t_ptrs)
|
| 258 |
+
acc_o = acc_o * o_scale[:, None]
|
| 259 |
+
# rematerialize offsets to save registers
|
| 260 |
+
start_m = tl.program_id(0)
|
| 261 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 262 |
+
# write back l and m
|
| 263 |
+
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
| 264 |
+
tl.store(lse_ptrs, lse_i)
|
| 265 |
+
# initialize pointers to output
|
| 266 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 267 |
+
out_ptrs = (
|
| 268 |
+
Out
|
| 269 |
+
+ off_b * stride_ob
|
| 270 |
+
+ off_h * stride_oh
|
| 271 |
+
+ (offs_m[:, None] * stride_om + offs_d[None, :])
|
| 272 |
+
)
|
| 273 |
+
if EVEN_M:
|
| 274 |
+
if EVEN_HEADDIM:
|
| 275 |
+
tl.store(out_ptrs, acc_o)
|
| 276 |
+
else:
|
| 277 |
+
tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
|
| 278 |
+
else:
|
| 279 |
+
if EVEN_HEADDIM:
|
| 280 |
+
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
| 281 |
+
else:
|
| 282 |
+
tl.store(
|
| 283 |
+
out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
@triton.jit
|
| 288 |
+
def _bwd_preprocess_do_o_dot(
|
| 289 |
+
Out,
|
| 290 |
+
DO,
|
| 291 |
+
Delta,
|
| 292 |
+
stride_ob,
|
| 293 |
+
stride_oh,
|
| 294 |
+
stride_om,
|
| 295 |
+
stride_dob,
|
| 296 |
+
stride_doh,
|
| 297 |
+
stride_dom,
|
| 298 |
+
nheads,
|
| 299 |
+
seqlen_q,
|
| 300 |
+
seqlen_q_rounded,
|
| 301 |
+
headdim,
|
| 302 |
+
BLOCK_M: tl.constexpr,
|
| 303 |
+
BLOCK_HEADDIM: tl.constexpr,
|
| 304 |
+
):
|
| 305 |
+
start_m = tl.program_id(0)
|
| 306 |
+
off_hb = tl.program_id(1)
|
| 307 |
+
off_b = off_hb // nheads
|
| 308 |
+
off_h = off_hb % nheads
|
| 309 |
+
# initialize offsets
|
| 310 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 311 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 312 |
+
# load
|
| 313 |
+
o = tl.load(
|
| 314 |
+
Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
|
| 315 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 316 |
+
other=0.0,
|
| 317 |
+
).to(tl.float32)
|
| 318 |
+
do = tl.load(
|
| 319 |
+
DO
|
| 320 |
+
+ off_b * stride_dob
|
| 321 |
+
+ off_h * stride_doh
|
| 322 |
+
+ offs_m[:, None] * stride_dom
|
| 323 |
+
+ offs_d[None, :],
|
| 324 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 325 |
+
other=0.0,
|
| 326 |
+
).to(tl.float32)
|
| 327 |
+
delta = tl.sum(o * do, axis=1)
|
| 328 |
+
# write-back
|
| 329 |
+
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
@triton.jit
|
| 333 |
+
def _bwd_store_dk_dv(
|
| 334 |
+
dk_ptrs,
|
| 335 |
+
dv_ptrs,
|
| 336 |
+
dk,
|
| 337 |
+
dv,
|
| 338 |
+
offs_n,
|
| 339 |
+
offs_d,
|
| 340 |
+
seqlen_k,
|
| 341 |
+
headdim,
|
| 342 |
+
EVEN_M: tl.constexpr,
|
| 343 |
+
EVEN_N: tl.constexpr,
|
| 344 |
+
EVEN_HEADDIM: tl.constexpr,
|
| 345 |
+
):
|
| 346 |
+
# [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False,
|
| 347 |
+
# if we just call tl.store(dv_ptrs), there's a race condition
|
| 348 |
+
if EVEN_N & EVEN_M:
|
| 349 |
+
if EVEN_HEADDIM:
|
| 350 |
+
tl.store(dv_ptrs, dv)
|
| 351 |
+
tl.store(dk_ptrs, dk)
|
| 352 |
+
else:
|
| 353 |
+
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
| 354 |
+
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
| 355 |
+
else:
|
| 356 |
+
if EVEN_HEADDIM:
|
| 357 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
| 358 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
| 359 |
+
else:
|
| 360 |
+
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
| 361 |
+
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
@triton.jit
|
| 365 |
+
def _bwd_kernel_one_col_block(
|
| 366 |
+
start_n,
|
| 367 |
+
Q,
|
| 368 |
+
K,
|
| 369 |
+
V,
|
| 370 |
+
Bias,
|
| 371 |
+
DO,
|
| 372 |
+
DQ,
|
| 373 |
+
DK,
|
| 374 |
+
DV,
|
| 375 |
+
LSE,
|
| 376 |
+
D,
|
| 377 |
+
softmax_scale,
|
| 378 |
+
stride_qm,
|
| 379 |
+
stride_kn,
|
| 380 |
+
stride_vn,
|
| 381 |
+
stride_bm,
|
| 382 |
+
stride_dom,
|
| 383 |
+
stride_dqm,
|
| 384 |
+
stride_dkn,
|
| 385 |
+
stride_dvn,
|
| 386 |
+
seqlen_q,
|
| 387 |
+
seqlen_k,
|
| 388 |
+
headdim,
|
| 389 |
+
ATOMIC_ADD: tl.constexpr,
|
| 390 |
+
BIAS_TYPE: tl.constexpr,
|
| 391 |
+
IS_CAUSAL: tl.constexpr,
|
| 392 |
+
BLOCK_HEADDIM: tl.constexpr,
|
| 393 |
+
EVEN_M: tl.constexpr,
|
| 394 |
+
EVEN_N: tl.constexpr,
|
| 395 |
+
EVEN_HEADDIM: tl.constexpr,
|
| 396 |
+
BLOCK_M: tl.constexpr,
|
| 397 |
+
BLOCK_N: tl.constexpr,
|
| 398 |
+
):
|
| 399 |
+
# We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
|
| 400 |
+
begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
|
| 401 |
+
# initialize row/col offsets
|
| 402 |
+
offs_qm = begin_m + tl.arange(0, BLOCK_M)
|
| 403 |
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
| 404 |
+
offs_m = tl.arange(0, BLOCK_M)
|
| 405 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 406 |
+
# initialize pointers to value-like data
|
| 407 |
+
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
|
| 408 |
+
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
| 409 |
+
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
| 410 |
+
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
|
| 411 |
+
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
|
| 412 |
+
if BIAS_TYPE == "vector":
|
| 413 |
+
b_ptrs = Bias + offs_n
|
| 414 |
+
elif BIAS_TYPE == "matrix":
|
| 415 |
+
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
| 416 |
+
# initialize dv and dk
|
| 417 |
+
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 418 |
+
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 419 |
+
# There seems to be some problem with Triton pipelining that makes results wrong for
|
| 420 |
+
# headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop
|
| 421 |
+
# may have zero step, and pipelining with the bias matrix could screw it up.
|
| 422 |
+
# So we just exit early.
|
| 423 |
+
if begin_m >= seqlen_q:
|
| 424 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
| 425 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
| 426 |
+
_bwd_store_dk_dv(
|
| 427 |
+
dk_ptrs,
|
| 428 |
+
dv_ptrs,
|
| 429 |
+
dk,
|
| 430 |
+
dv,
|
| 431 |
+
offs_n,
|
| 432 |
+
offs_d,
|
| 433 |
+
seqlen_k,
|
| 434 |
+
headdim,
|
| 435 |
+
EVEN_M=EVEN_M,
|
| 436 |
+
EVEN_N=EVEN_N,
|
| 437 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
| 438 |
+
)
|
| 439 |
+
return
|
| 440 |
+
# k and v stay in SRAM throughout
|
| 441 |
+
# [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
|
| 442 |
+
# if we just call tl.load(k_ptrs), we get the wrong output!
|
| 443 |
+
if EVEN_N & EVEN_M:
|
| 444 |
+
if EVEN_HEADDIM:
|
| 445 |
+
k = tl.load(k_ptrs)
|
| 446 |
+
v = tl.load(v_ptrs)
|
| 447 |
+
else:
|
| 448 |
+
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 449 |
+
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 450 |
+
else:
|
| 451 |
+
if EVEN_HEADDIM:
|
| 452 |
+
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
| 453 |
+
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
| 454 |
+
else:
|
| 455 |
+
k = tl.load(
|
| 456 |
+
k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0
|
| 457 |
+
)
|
| 458 |
+
v = tl.load(
|
| 459 |
+
v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0
|
| 460 |
+
)
|
| 461 |
+
# loop over rows
|
| 462 |
+
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
| 463 |
+
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
|
| 464 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
| 465 |
+
offs_m_curr = start_m + offs_m
|
| 466 |
+
# load q, k, v, do on-chip
|
| 467 |
+
# Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117)
|
| 468 |
+
if EVEN_M & EVEN_HEADDIM:
|
| 469 |
+
q = tl.load(q_ptrs)
|
| 470 |
+
else:
|
| 471 |
+
if EVEN_HEADDIM:
|
| 472 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
| 473 |
+
else:
|
| 474 |
+
q = tl.load(
|
| 475 |
+
q_ptrs,
|
| 476 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 477 |
+
other=0.0,
|
| 478 |
+
)
|
| 479 |
+
# recompute p = softmax(qk, dim=-1).T
|
| 480 |
+
qk = tl.dot(q, k, trans_b=True)
|
| 481 |
+
# Trying to combine the two masks seem to make the result wrong
|
| 482 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
| 483 |
+
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
|
| 484 |
+
if IS_CAUSAL:
|
| 485 |
+
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
|
| 486 |
+
if BIAS_TYPE != "none":
|
| 487 |
+
tl.debug_barrier() # Race condition otherwise
|
| 488 |
+
if BIAS_TYPE == "vector":
|
| 489 |
+
if EVEN_N:
|
| 490 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
| 491 |
+
else:
|
| 492 |
+
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
|
| 493 |
+
bias = bias[None, :]
|
| 494 |
+
elif BIAS_TYPE == "matrix":
|
| 495 |
+
if EVEN_M & EVEN_N:
|
| 496 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
| 497 |
+
else:
|
| 498 |
+
bias = tl.load(
|
| 499 |
+
b_ptrs,
|
| 500 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k),
|
| 501 |
+
other=0.0,
|
| 502 |
+
).to(tl.float32)
|
| 503 |
+
qk = qk * softmax_scale + bias
|
| 504 |
+
# There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
|
| 505 |
+
# Also wrong for headdim=64.
|
| 506 |
+
if not (EVEN_M & EVEN_HEADDIM):
|
| 507 |
+
tl.debug_barrier()
|
| 508 |
+
lse_i = tl.load(LSE + offs_m_curr)
|
| 509 |
+
if BIAS_TYPE == "none":
|
| 510 |
+
p = tl.exp(qk * softmax_scale - lse_i[:, None])
|
| 511 |
+
else:
|
| 512 |
+
p = tl.exp(qk - lse_i[:, None])
|
| 513 |
+
# compute dv
|
| 514 |
+
# [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call
|
| 515 |
+
# do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs
|
| 516 |
+
# in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512,
|
| 517 |
+
# the output is correct.
|
| 518 |
+
if EVEN_M & EVEN_HEADDIM:
|
| 519 |
+
do = tl.load(do_ptrs)
|
| 520 |
+
else:
|
| 521 |
+
# [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
|
| 522 |
+
do = tl.load(
|
| 523 |
+
do_ptrs,
|
| 524 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 525 |
+
other=0.0,
|
| 526 |
+
)
|
| 527 |
+
# if EVEN_M:
|
| 528 |
+
# if EVEN_HEADDIM:
|
| 529 |
+
# do = tl.load(do_ptrs)
|
| 530 |
+
# else:
|
| 531 |
+
# do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 532 |
+
# else:
|
| 533 |
+
# if EVEN_HEADDIM:
|
| 534 |
+
# do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
| 535 |
+
# else:
|
| 536 |
+
# do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
|
| 537 |
+
# & (offs_d[None, :] < headdim), other=0.0)
|
| 538 |
+
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
|
| 539 |
+
# compute dp = dot(v, do)
|
| 540 |
+
# There seems to be a race condition when headdim=48/96, and dq, dk are wrong.
|
| 541 |
+
# Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True
|
| 542 |
+
# Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False
|
| 543 |
+
if not (EVEN_M & EVEN_HEADDIM):
|
| 544 |
+
tl.debug_barrier()
|
| 545 |
+
dp = tl.dot(do, v, trans_b=True)
|
| 546 |
+
# There's a race condition for headdim=48
|
| 547 |
+
if not EVEN_HEADDIM:
|
| 548 |
+
tl.debug_barrier()
|
| 549 |
+
# compute ds = p * (dp - delta[:, None])
|
| 550 |
+
# Putting the subtraction after the dp matmul (instead of before) is slightly faster
|
| 551 |
+
Di = tl.load(D + offs_m_curr)
|
| 552 |
+
# Converting ds to q.dtype here reduces register pressure and makes it much faster
|
| 553 |
+
# for BLOCK_HEADDIM=128
|
| 554 |
+
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
|
| 555 |
+
# compute dk = dot(ds.T, q)
|
| 556 |
+
dk += tl.dot(ds, q, trans_a=True)
|
| 557 |
+
# compute dq
|
| 558 |
+
if not (
|
| 559 |
+
EVEN_M & EVEN_HEADDIM
|
| 560 |
+
): # Otherewise there's a race condition when BIAS_TYPE='matrix'
|
| 561 |
+
tl.debug_barrier()
|
| 562 |
+
if not ATOMIC_ADD:
|
| 563 |
+
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
| 564 |
+
dq = tl.load(dq_ptrs, eviction_policy="evict_last")
|
| 565 |
+
dq += tl.dot(ds, k)
|
| 566 |
+
tl.store(dq_ptrs, dq, eviction_policy="evict_last")
|
| 567 |
+
else:
|
| 568 |
+
if EVEN_HEADDIM:
|
| 569 |
+
dq = tl.load(
|
| 570 |
+
dq_ptrs,
|
| 571 |
+
mask=offs_m_curr[:, None] < seqlen_q,
|
| 572 |
+
other=0.0,
|
| 573 |
+
eviction_policy="evict_last",
|
| 574 |
+
)
|
| 575 |
+
dq += tl.dot(ds, k)
|
| 576 |
+
tl.store(
|
| 577 |
+
dq_ptrs,
|
| 578 |
+
dq,
|
| 579 |
+
mask=offs_m_curr[:, None] < seqlen_q,
|
| 580 |
+
eviction_policy="evict_last",
|
| 581 |
+
)
|
| 582 |
+
else:
|
| 583 |
+
dq = tl.load(
|
| 584 |
+
dq_ptrs,
|
| 585 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 586 |
+
other=0.0,
|
| 587 |
+
eviction_policy="evict_last",
|
| 588 |
+
)
|
| 589 |
+
dq += tl.dot(ds, k)
|
| 590 |
+
tl.store(
|
| 591 |
+
dq_ptrs,
|
| 592 |
+
dq,
|
| 593 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 594 |
+
eviction_policy="evict_last",
|
| 595 |
+
)
|
| 596 |
+
else: # If we're parallelizing across the seqlen_k dimension
|
| 597 |
+
dq = tl.dot(ds, k)
|
| 598 |
+
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
| 599 |
+
tl.atomic_add(dq_ptrs, dq)
|
| 600 |
+
else:
|
| 601 |
+
if EVEN_HEADDIM:
|
| 602 |
+
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
| 603 |
+
else:
|
| 604 |
+
tl.atomic_add(
|
| 605 |
+
dq_ptrs,
|
| 606 |
+
dq,
|
| 607 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 608 |
+
)
|
| 609 |
+
# increment pointers
|
| 610 |
+
dq_ptrs += BLOCK_M * stride_dqm
|
| 611 |
+
q_ptrs += BLOCK_M * stride_qm
|
| 612 |
+
do_ptrs += BLOCK_M * stride_dom
|
| 613 |
+
if BIAS_TYPE == "matrix":
|
| 614 |
+
b_ptrs += BLOCK_M * stride_bm
|
| 615 |
+
# write-back
|
| 616 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
| 617 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
| 618 |
+
_bwd_store_dk_dv(
|
| 619 |
+
dk_ptrs,
|
| 620 |
+
dv_ptrs,
|
| 621 |
+
dk,
|
| 622 |
+
dv,
|
| 623 |
+
offs_n,
|
| 624 |
+
offs_d,
|
| 625 |
+
seqlen_k,
|
| 626 |
+
headdim,
|
| 627 |
+
EVEN_M=EVEN_M,
|
| 628 |
+
EVEN_N=EVEN_N,
|
| 629 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
def init_to_zero(name):
|
| 634 |
+
return lambda nargs: nargs[name].zero_()
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
@triton.autotune(
|
| 638 |
+
configs=[
|
| 639 |
+
triton.Config(
|
| 640 |
+
{"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False},
|
| 641 |
+
num_warps=8,
|
| 642 |
+
num_stages=1,
|
| 643 |
+
pre_hook=init_to_zero("DQ"),
|
| 644 |
+
),
|
| 645 |
+
triton.Config(
|
| 646 |
+
{"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True},
|
| 647 |
+
num_warps=8,
|
| 648 |
+
num_stages=1,
|
| 649 |
+
pre_hook=init_to_zero("DQ"),
|
| 650 |
+
),
|
| 651 |
+
# Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
|
| 652 |
+
# # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
|
| 653 |
+
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
| 654 |
+
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
| 655 |
+
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
| 656 |
+
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
| 657 |
+
],
|
| 658 |
+
key=["CACHE_KEY_SEQLEN_Q", "CACHE_KEY_SEQLEN_K", "BIAS_TYPE", "IS_CAUSAL", "BLOCK_HEADDIM"],
|
| 659 |
+
)
|
| 660 |
+
@triton.heuristics(
|
| 661 |
+
{
|
| 662 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
| 663 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
| 664 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
| 665 |
+
}
|
| 666 |
+
)
|
| 667 |
+
@triton.jit
|
| 668 |
+
def _bwd_kernel(
|
| 669 |
+
Q,
|
| 670 |
+
K,
|
| 671 |
+
V,
|
| 672 |
+
Bias,
|
| 673 |
+
DO,
|
| 674 |
+
DQ,
|
| 675 |
+
DK,
|
| 676 |
+
DV,
|
| 677 |
+
LSE,
|
| 678 |
+
D,
|
| 679 |
+
softmax_scale,
|
| 680 |
+
stride_qb,
|
| 681 |
+
stride_qh,
|
| 682 |
+
stride_qm,
|
| 683 |
+
stride_kb,
|
| 684 |
+
stride_kh,
|
| 685 |
+
stride_kn,
|
| 686 |
+
stride_vb,
|
| 687 |
+
stride_vh,
|
| 688 |
+
stride_vn,
|
| 689 |
+
stride_bb,
|
| 690 |
+
stride_bh,
|
| 691 |
+
stride_bm,
|
| 692 |
+
stride_dob,
|
| 693 |
+
stride_doh,
|
| 694 |
+
stride_dom,
|
| 695 |
+
stride_dqb,
|
| 696 |
+
stride_dqh,
|
| 697 |
+
stride_dqm,
|
| 698 |
+
stride_dkb,
|
| 699 |
+
stride_dkh,
|
| 700 |
+
stride_dkn,
|
| 701 |
+
stride_dvb,
|
| 702 |
+
stride_dvh,
|
| 703 |
+
stride_dvn,
|
| 704 |
+
nheads,
|
| 705 |
+
seqlen_q,
|
| 706 |
+
seqlen_k,
|
| 707 |
+
seqlen_q_rounded,
|
| 708 |
+
headdim,
|
| 709 |
+
CACHE_KEY_SEQLEN_Q,
|
| 710 |
+
CACHE_KEY_SEQLEN_K,
|
| 711 |
+
BIAS_TYPE: tl.constexpr,
|
| 712 |
+
IS_CAUSAL: tl.constexpr,
|
| 713 |
+
BLOCK_HEADDIM: tl.constexpr,
|
| 714 |
+
SEQUENCE_PARALLEL: tl.constexpr,
|
| 715 |
+
EVEN_M: tl.constexpr,
|
| 716 |
+
EVEN_N: tl.constexpr,
|
| 717 |
+
EVEN_HEADDIM: tl.constexpr,
|
| 718 |
+
BLOCK_M: tl.constexpr,
|
| 719 |
+
BLOCK_N: tl.constexpr,
|
| 720 |
+
):
|
| 721 |
+
off_hb = tl.program_id(1)
|
| 722 |
+
off_b = off_hb // nheads
|
| 723 |
+
off_h = off_hb % nheads
|
| 724 |
+
# offset pointers for batch/head
|
| 725 |
+
Q += off_b * stride_qb + off_h * stride_qh
|
| 726 |
+
K += off_b * stride_kb + off_h * stride_kh
|
| 727 |
+
V += off_b * stride_vb + off_h * stride_vh
|
| 728 |
+
DO += off_b * stride_dob + off_h * stride_doh
|
| 729 |
+
DQ += off_b * stride_dqb + off_h * stride_dqh
|
| 730 |
+
DK += off_b * stride_dkb + off_h * stride_dkh
|
| 731 |
+
DV += off_b * stride_dvb + off_h * stride_dvh
|
| 732 |
+
if BIAS_TYPE != "none":
|
| 733 |
+
Bias += off_b * stride_bb + off_h * stride_bh
|
| 734 |
+
# pointer to row-wise quantities in value-like data
|
| 735 |
+
D += off_hb * seqlen_q_rounded
|
| 736 |
+
LSE += off_hb * seqlen_q_rounded
|
| 737 |
+
if not SEQUENCE_PARALLEL:
|
| 738 |
+
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
| 739 |
+
for start_n in range(0, num_block_n):
|
| 740 |
+
_bwd_kernel_one_col_block(
|
| 741 |
+
start_n,
|
| 742 |
+
Q,
|
| 743 |
+
K,
|
| 744 |
+
V,
|
| 745 |
+
Bias,
|
| 746 |
+
DO,
|
| 747 |
+
DQ,
|
| 748 |
+
DK,
|
| 749 |
+
DV,
|
| 750 |
+
LSE,
|
| 751 |
+
D,
|
| 752 |
+
softmax_scale,
|
| 753 |
+
stride_qm,
|
| 754 |
+
stride_kn,
|
| 755 |
+
stride_vn,
|
| 756 |
+
stride_bm,
|
| 757 |
+
stride_dom,
|
| 758 |
+
stride_dqm,
|
| 759 |
+
stride_dkn,
|
| 760 |
+
stride_dvn,
|
| 761 |
+
seqlen_q,
|
| 762 |
+
seqlen_k,
|
| 763 |
+
headdim,
|
| 764 |
+
ATOMIC_ADD=False,
|
| 765 |
+
BIAS_TYPE=BIAS_TYPE,
|
| 766 |
+
IS_CAUSAL=IS_CAUSAL,
|
| 767 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
| 768 |
+
EVEN_M=EVEN_M,
|
| 769 |
+
EVEN_N=EVEN_N,
|
| 770 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
| 771 |
+
BLOCK_M=BLOCK_M,
|
| 772 |
+
BLOCK_N=BLOCK_N,
|
| 773 |
+
)
|
| 774 |
+
else:
|
| 775 |
+
start_n = tl.program_id(0)
|
| 776 |
+
_bwd_kernel_one_col_block(
|
| 777 |
+
start_n,
|
| 778 |
+
Q,
|
| 779 |
+
K,
|
| 780 |
+
V,
|
| 781 |
+
Bias,
|
| 782 |
+
DO,
|
| 783 |
+
DQ,
|
| 784 |
+
DK,
|
| 785 |
+
DV,
|
| 786 |
+
LSE,
|
| 787 |
+
D,
|
| 788 |
+
softmax_scale,
|
| 789 |
+
stride_qm,
|
| 790 |
+
stride_kn,
|
| 791 |
+
stride_vn,
|
| 792 |
+
stride_bm,
|
| 793 |
+
stride_dom,
|
| 794 |
+
stride_dqm,
|
| 795 |
+
stride_dkn,
|
| 796 |
+
stride_dvn,
|
| 797 |
+
seqlen_q,
|
| 798 |
+
seqlen_k,
|
| 799 |
+
headdim,
|
| 800 |
+
ATOMIC_ADD=True,
|
| 801 |
+
BIAS_TYPE=BIAS_TYPE,
|
| 802 |
+
IS_CAUSAL=IS_CAUSAL,
|
| 803 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
| 804 |
+
EVEN_M=EVEN_M,
|
| 805 |
+
EVEN_N=EVEN_N,
|
| 806 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
| 807 |
+
BLOCK_M=BLOCK_M,
|
| 808 |
+
BLOCK_N=BLOCK_N,
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
| 813 |
+
# shape constraints
|
| 814 |
+
batch, seqlen_q, nheads, d = q.shape
|
| 815 |
+
_, seqlen_k, _, _ = k.shape
|
| 816 |
+
assert k.shape == (batch, seqlen_k, nheads, d)
|
| 817 |
+
assert v.shape == (batch, seqlen_k, nheads, d)
|
| 818 |
+
assert d <= 128, "FlashAttention only support head dimensions up to 128"
|
| 819 |
+
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type"
|
| 820 |
+
assert q.dtype in [torch.float16, torch.bfloat16], "Only support fp16 and bf16"
|
| 821 |
+
assert q.is_cuda and k.is_cuda and v.is_cuda
|
| 822 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
| 823 |
+
|
| 824 |
+
has_bias = bias is not None
|
| 825 |
+
bias_type = "none"
|
| 826 |
+
if has_bias:
|
| 827 |
+
assert bias.dtype in [q.dtype, torch.float]
|
| 828 |
+
assert bias.is_cuda
|
| 829 |
+
assert bias.dim() == 4
|
| 830 |
+
if bias.stride(-1) != 1:
|
| 831 |
+
bias = bias.contiguous()
|
| 832 |
+
if bias.shape[2:] == (1, seqlen_k):
|
| 833 |
+
bias_type = "vector"
|
| 834 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
| 835 |
+
bias_type = "matrix"
|
| 836 |
+
else:
|
| 837 |
+
raise RuntimeError(
|
| 838 |
+
"Last 2 dimensions of bias must be (1, seqlen_k)" " or (seqlen_q, seqlen_k)"
|
| 839 |
+
)
|
| 840 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
| 841 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
| 842 |
+
|
| 843 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
| 844 |
+
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
| 845 |
+
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
| 846 |
+
o = torch.empty_like(q)
|
| 847 |
+
|
| 848 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
| 849 |
+
BLOCK = 128
|
| 850 |
+
num_warps = 4 if d <= 64 else 8
|
| 851 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
| 852 |
+
_fwd_kernel[grid](
|
| 853 |
+
q,
|
| 854 |
+
k,
|
| 855 |
+
v,
|
| 856 |
+
bias,
|
| 857 |
+
o,
|
| 858 |
+
lse,
|
| 859 |
+
tmp,
|
| 860 |
+
softmax_scale,
|
| 861 |
+
q.stride(0),
|
| 862 |
+
q.stride(2),
|
| 863 |
+
q.stride(1),
|
| 864 |
+
k.stride(0),
|
| 865 |
+
k.stride(2),
|
| 866 |
+
k.stride(1),
|
| 867 |
+
v.stride(0),
|
| 868 |
+
v.stride(2),
|
| 869 |
+
v.stride(1),
|
| 870 |
+
*bias_strides,
|
| 871 |
+
o.stride(0),
|
| 872 |
+
o.stride(2),
|
| 873 |
+
o.stride(1),
|
| 874 |
+
nheads,
|
| 875 |
+
seqlen_q,
|
| 876 |
+
seqlen_k,
|
| 877 |
+
seqlen_q_rounded,
|
| 878 |
+
d,
|
| 879 |
+
seqlen_q // 32,
|
| 880 |
+
seqlen_k // 32, # key for triton cache (limit number of compilations)
|
| 881 |
+
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
| 882 |
+
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
| 883 |
+
bias_type,
|
| 884 |
+
causal,
|
| 885 |
+
BLOCK_HEADDIM,
|
| 886 |
+
BLOCK_M=BLOCK,
|
| 887 |
+
BLOCK_N=BLOCK,
|
| 888 |
+
num_warps=num_warps,
|
| 889 |
+
num_stages=1,
|
| 890 |
+
)
|
| 891 |
+
return o, lse, softmax_scale # softmax_scale could have been updated
|
| 892 |
+
|
| 893 |
+
|
| 894 |
+
def _flash_attn_backward(
|
| 895 |
+
do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None
|
| 896 |
+
):
|
| 897 |
+
# Make sure that the last dimension is contiguous
|
| 898 |
+
if do.stride(-1) != 1:
|
| 899 |
+
do = do.contiguous()
|
| 900 |
+
batch, seqlen_q, nheads, d = q.shape
|
| 901 |
+
_, seqlen_k, _, _ = k.shape
|
| 902 |
+
# assert d in {16, 32, 64, 128}
|
| 903 |
+
assert d <= 128
|
| 904 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
| 905 |
+
assert lse.shape == (batch, nheads, seqlen_q_rounded)
|
| 906 |
+
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
|
| 907 |
+
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
|
| 908 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
| 909 |
+
# dq_accum = torch.zeros_like(q, dtype=torch.float32)
|
| 910 |
+
dq_accum = torch.empty_like(q, dtype=torch.float32)
|
| 911 |
+
delta = torch.empty_like(lse)
|
| 912 |
+
# delta = torch.zeros_like(lse)
|
| 913 |
+
|
| 914 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
| 915 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
| 916 |
+
_bwd_preprocess_do_o_dot[grid](
|
| 917 |
+
o,
|
| 918 |
+
do,
|
| 919 |
+
delta,
|
| 920 |
+
o.stride(0),
|
| 921 |
+
o.stride(2),
|
| 922 |
+
o.stride(1),
|
| 923 |
+
do.stride(0),
|
| 924 |
+
do.stride(2),
|
| 925 |
+
do.stride(1),
|
| 926 |
+
nheads,
|
| 927 |
+
seqlen_q,
|
| 928 |
+
seqlen_q_rounded,
|
| 929 |
+
d,
|
| 930 |
+
BLOCK_M=128,
|
| 931 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
| 932 |
+
)
|
| 933 |
+
|
| 934 |
+
has_bias = bias is not None
|
| 935 |
+
bias_type = "none"
|
| 936 |
+
if has_bias:
|
| 937 |
+
assert bias.dtype in [q.dtype, torch.float]
|
| 938 |
+
assert bias.is_cuda
|
| 939 |
+
assert bias.dim() == 4
|
| 940 |
+
assert bias.stride(-1) == 1
|
| 941 |
+
if bias.shape[2:] == (1, seqlen_k):
|
| 942 |
+
bias_type = "vector"
|
| 943 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
| 944 |
+
bias_type = "matrix"
|
| 945 |
+
else:
|
| 946 |
+
raise RuntimeError(
|
| 947 |
+
"Last 2 dimensions of bias must be (1, seqlen_k)" " or (seqlen_q, seqlen_k)"
|
| 948 |
+
)
|
| 949 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
| 950 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
| 951 |
+
|
| 952 |
+
# BLOCK_M = 128
|
| 953 |
+
# BLOCK_N = 64
|
| 954 |
+
# num_warps = 4
|
| 955 |
+
grid = lambda META: (
|
| 956 |
+
triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
|
| 957 |
+
batch * nheads,
|
| 958 |
+
)
|
| 959 |
+
_bwd_kernel[grid](
|
| 960 |
+
q,
|
| 961 |
+
k,
|
| 962 |
+
v,
|
| 963 |
+
bias,
|
| 964 |
+
do,
|
| 965 |
+
dq_accum,
|
| 966 |
+
dk,
|
| 967 |
+
dv,
|
| 968 |
+
lse,
|
| 969 |
+
delta,
|
| 970 |
+
softmax_scale,
|
| 971 |
+
q.stride(0),
|
| 972 |
+
q.stride(2),
|
| 973 |
+
q.stride(1),
|
| 974 |
+
k.stride(0),
|
| 975 |
+
k.stride(2),
|
| 976 |
+
k.stride(1),
|
| 977 |
+
v.stride(0),
|
| 978 |
+
v.stride(2),
|
| 979 |
+
v.stride(1),
|
| 980 |
+
*bias_strides,
|
| 981 |
+
do.stride(0),
|
| 982 |
+
do.stride(2),
|
| 983 |
+
do.stride(1),
|
| 984 |
+
dq_accum.stride(0),
|
| 985 |
+
dq_accum.stride(2),
|
| 986 |
+
dq_accum.stride(1),
|
| 987 |
+
dk.stride(0),
|
| 988 |
+
dk.stride(2),
|
| 989 |
+
dk.stride(1),
|
| 990 |
+
dv.stride(0),
|
| 991 |
+
dv.stride(2),
|
| 992 |
+
dv.stride(1),
|
| 993 |
+
nheads,
|
| 994 |
+
seqlen_q,
|
| 995 |
+
seqlen_k,
|
| 996 |
+
seqlen_q_rounded,
|
| 997 |
+
d,
|
| 998 |
+
seqlen_q // 32,
|
| 999 |
+
seqlen_k // 32, # key for triton cache (limit number of compilations)
|
| 1000 |
+
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
| 1001 |
+
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
| 1002 |
+
bias_type,
|
| 1003 |
+
causal,
|
| 1004 |
+
BLOCK_HEADDIM,
|
| 1005 |
+
# SEQUENCE_PARALLEL=False,
|
| 1006 |
+
# BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
|
| 1007 |
+
# num_warps=num_warps,
|
| 1008 |
+
# num_stages=1,
|
| 1009 |
+
)
|
| 1010 |
+
dq.copy_(dq_accum)
|
| 1011 |
+
|
| 1012 |
+
|
| 1013 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
| 1014 |
+
@staticmethod
|
| 1015 |
+
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
| 1016 |
+
"""
|
| 1017 |
+
qkv: (batch, seqlen, 3, nheads, headdim)
|
| 1018 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
| 1019 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
| 1020 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
| 1021 |
+
"""
|
| 1022 |
+
# Make sure that the last dimension is contiguous
|
| 1023 |
+
if qkv.stride(-1) != 1:
|
| 1024 |
+
qkv = qkv.contiguous()
|
| 1025 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
| 1026 |
+
qkv[:, :, 0],
|
| 1027 |
+
qkv[:, :, 1],
|
| 1028 |
+
qkv[:, :, 2],
|
| 1029 |
+
bias=bias,
|
| 1030 |
+
causal=causal,
|
| 1031 |
+
softmax_scale=softmax_scale,
|
| 1032 |
+
)
|
| 1033 |
+
ctx.save_for_backward(qkv, o, lse, bias)
|
| 1034 |
+
ctx.causal = causal
|
| 1035 |
+
return o
|
| 1036 |
+
|
| 1037 |
+
@staticmethod
|
| 1038 |
+
def backward(ctx, do):
|
| 1039 |
+
qkv, o, lse, bias = ctx.saved_tensors
|
| 1040 |
+
assert not ctx.needs_input_grad[1], "FlashAttention does not support bias gradient yet"
|
| 1041 |
+
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
| 1042 |
+
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
| 1043 |
+
with torch.inference_mode():
|
| 1044 |
+
dqkv = torch.empty_like(qkv)
|
| 1045 |
+
_flash_attn_backward(
|
| 1046 |
+
do,
|
| 1047 |
+
qkv[:, :, 0],
|
| 1048 |
+
qkv[:, :, 1],
|
| 1049 |
+
qkv[:, :, 2],
|
| 1050 |
+
o,
|
| 1051 |
+
lse,
|
| 1052 |
+
dqkv[:, :, 0],
|
| 1053 |
+
dqkv[:, :, 1],
|
| 1054 |
+
dqkv[:, :, 2],
|
| 1055 |
+
bias=bias,
|
| 1056 |
+
causal=ctx.causal,
|
| 1057 |
+
softmax_scale=ctx.softmax_scale,
|
| 1058 |
+
)
|
| 1059 |
+
return dqkv, None, None, None
|
| 1060 |
+
|
| 1061 |
+
|
| 1062 |
+
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
| 1063 |
+
|
| 1064 |
+
|
| 1065 |
+
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
| 1066 |
+
@staticmethod
|
| 1067 |
+
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
| 1068 |
+
"""
|
| 1069 |
+
q: (batch, seqlen_q, nheads, headdim)
|
| 1070 |
+
kv: (batch, seqlen_k, 2, nheads, headdim)
|
| 1071 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
| 1072 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
| 1073 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
| 1074 |
+
"""
|
| 1075 |
+
# Make sure that the last dimension is contiguous
|
| 1076 |
+
q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
| 1077 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
| 1078 |
+
q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale
|
| 1079 |
+
)
|
| 1080 |
+
ctx.save_for_backward(q, kv, o, lse, bias)
|
| 1081 |
+
ctx.causal = causal
|
| 1082 |
+
return o
|
| 1083 |
+
|
| 1084 |
+
@staticmethod
|
| 1085 |
+
def backward(ctx, do):
|
| 1086 |
+
q, kv, o, lse, bias = ctx.saved_tensors
|
| 1087 |
+
if len(ctx.needs_input_grad) >= 3:
|
| 1088 |
+
assert not ctx.needs_input_grad[2], "FlashAttention does not support bias gradient yet"
|
| 1089 |
+
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
| 1090 |
+
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
| 1091 |
+
with torch.inference_mode():
|
| 1092 |
+
dq = torch.empty_like(q)
|
| 1093 |
+
dkv = torch.empty_like(kv)
|
| 1094 |
+
_flash_attn_backward(
|
| 1095 |
+
do,
|
| 1096 |
+
q,
|
| 1097 |
+
kv[:, :, 0],
|
| 1098 |
+
kv[:, :, 1],
|
| 1099 |
+
o,
|
| 1100 |
+
lse,
|
| 1101 |
+
dq,
|
| 1102 |
+
dkv[:, :, 0],
|
| 1103 |
+
dkv[:, :, 1],
|
| 1104 |
+
bias=bias,
|
| 1105 |
+
causal=ctx.causal,
|
| 1106 |
+
softmax_scale=ctx.softmax_scale,
|
| 1107 |
+
)
|
| 1108 |
+
return dq, dkv, None, None, None
|
| 1109 |
+
|
| 1110 |
+
|
| 1111 |
+
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
| 1112 |
+
|
| 1113 |
+
|
| 1114 |
+
class FlashAttnFunc(torch.autograd.Function):
|
| 1115 |
+
@staticmethod
|
| 1116 |
+
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
| 1117 |
+
"""
|
| 1118 |
+
q: (batch_size, seqlen_q, nheads, headdim)
|
| 1119 |
+
k, v: (batch_size, seqlen_k, nheads, headdim)
|
| 1120 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
| 1121 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
| 1122 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
| 1123 |
+
"""
|
| 1124 |
+
# Make sure that the last dimension is contiguous
|
| 1125 |
+
q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
| 1126 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
| 1127 |
+
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
|
| 1128 |
+
)
|
| 1129 |
+
ctx.save_for_backward(q, k, v, o, lse, bias)
|
| 1130 |
+
ctx.causal = causal
|
| 1131 |
+
return o
|
| 1132 |
+
|
| 1133 |
+
@staticmethod
|
| 1134 |
+
def backward(ctx, do):
|
| 1135 |
+
q, k, v, o, lse, bias = ctx.saved_tensors
|
| 1136 |
+
assert not ctx.needs_input_grad[3], "FlashAttention does not support bias gradient yet"
|
| 1137 |
+
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
| 1138 |
+
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
| 1139 |
+
with torch.inference_mode():
|
| 1140 |
+
dq = torch.empty_like(q)
|
| 1141 |
+
dk = torch.empty_like(k)
|
| 1142 |
+
dv = torch.empty_like(v)
|
| 1143 |
+
_flash_attn_backward(
|
| 1144 |
+
do,
|
| 1145 |
+
q,
|
| 1146 |
+
k,
|
| 1147 |
+
v,
|
| 1148 |
+
o,
|
| 1149 |
+
lse,
|
| 1150 |
+
dq,
|
| 1151 |
+
dk,
|
| 1152 |
+
dv,
|
| 1153 |
+
bias=bias,
|
| 1154 |
+
causal=ctx.causal,
|
| 1155 |
+
softmax_scale=ctx.softmax_scale,
|
| 1156 |
+
)
|
| 1157 |
+
return dq, dk, dv, None, None, None
|
| 1158 |
+
|
| 1159 |
+
|
| 1160 |
+
flash_attn_func = FlashAttnFunc.apply
|