Create train.py
Browse files
    	
        train.py
    ADDED
    
    | @@ -0,0 +1,216 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import random
         | 
| 2 | 
            +
            import logging
         | 
| 3 | 
            +
            from datasets import load_dataset, Dataset, DatasetDict
         | 
| 4 | 
            +
            from sentence_transformers import (
         | 
| 5 | 
            +
                SentenceTransformer,
         | 
| 6 | 
            +
                SentenceTransformerTrainer,
         | 
| 7 | 
            +
                SentenceTransformerTrainingArguments,
         | 
| 8 | 
            +
                SentenceTransformerModelCardData,
         | 
| 9 | 
            +
            )
         | 
| 10 | 
            +
            from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
         | 
| 11 | 
            +
            from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers
         | 
| 12 | 
            +
            from sentence_transformers.evaluation import NanoBEIREvaluator
         | 
| 13 | 
            +
            from sentence_transformers.models.StaticEmbedding import StaticEmbedding
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            from transformers import AutoTokenizer
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            logging.basicConfig(
         | 
| 18 | 
            +
                format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
         | 
| 19 | 
            +
            )
         | 
| 20 | 
            +
            random.seed(12)
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            def main():
         | 
| 24 | 
            +
                # 1. Load a model to finetune with 2. (Optional) model card data
         | 
| 25 | 
            +
                static_embedding = StaticEmbedding(AutoTokenizer.from_pretrained("google-bert/bert-base-uncased"), embedding_dim=1024)
         | 
| 26 | 
            +
                model = SentenceTransformer(
         | 
| 27 | 
            +
                    modules=[static_embedding],
         | 
| 28 | 
            +
                    model_card_data=SentenceTransformerModelCardData(
         | 
| 29 | 
            +
                        language="en",
         | 
| 30 | 
            +
                        license="apache-2.0",
         | 
| 31 | 
            +
                        model_name="Static Embeddings with BERT uncased tokenizer finetuned on various datasets",
         | 
| 32 | 
            +
                    ),
         | 
| 33 | 
            +
                )
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                # 3. Set up training & evaluation datasets - each dataset is trained with MNRL (with MRL)
         | 
| 36 | 
            +
                print("Loading gooaq dataset...")
         | 
| 37 | 
            +
                gooaq_dataset = load_dataset("sentence-transformers/gooaq", split="train")
         | 
| 38 | 
            +
                gooaq_dataset_dict = gooaq_dataset.train_test_split(test_size=10_000, seed=12)
         | 
| 39 | 
            +
                gooaq_train_dataset: Dataset = gooaq_dataset_dict["train"]
         | 
| 40 | 
            +
                gooaq_eval_dataset: Dataset = gooaq_dataset_dict["test"]
         | 
| 41 | 
            +
                print("Loaded gooaq dataset.")
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                print("Loading msmarco dataset...")
         | 
| 44 | 
            +
                msmarco_dataset = load_dataset("sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1", "triplet", split="train")
         | 
| 45 | 
            +
                msmarco_dataset_dict = msmarco_dataset.train_test_split(test_size=10_000, seed=12)
         | 
| 46 | 
            +
                msmarco_train_dataset: Dataset = msmarco_dataset_dict["train"]
         | 
| 47 | 
            +
                msmarco_eval_dataset: Dataset = msmarco_dataset_dict["test"]
         | 
| 48 | 
            +
                print("Loaded msmarco dataset.")
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                print("Loading squad dataset...")
         | 
| 51 | 
            +
                squad_dataset = load_dataset("sentence-transformers/squad", split="train")
         | 
| 52 | 
            +
                squad_dataset_dict = squad_dataset.train_test_split(test_size=10_000, seed=12)
         | 
| 53 | 
            +
                squad_train_dataset: Dataset = squad_dataset_dict["train"]
         | 
| 54 | 
            +
                squad_eval_dataset: Dataset = squad_dataset_dict["test"]
         | 
| 55 | 
            +
                print("Loaded squad dataset.")
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                print("Loading s2orc dataset...")
         | 
| 58 | 
            +
                s2orc_dataset = load_dataset("sentence-transformers/s2orc", "title-abstract-pair", split="train[:100000]")
         | 
| 59 | 
            +
                s2orc_dataset_dict = s2orc_dataset.train_test_split(test_size=10_000, seed=12)
         | 
| 60 | 
            +
                s2orc_train_dataset: Dataset = s2orc_dataset_dict["train"]
         | 
| 61 | 
            +
                s2orc_eval_dataset: Dataset = s2orc_dataset_dict["test"]
         | 
| 62 | 
            +
                print("Loaded s2orc dataset.")
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                print("Loading allnli dataset...")
         | 
| 65 | 
            +
                allnli_train_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="train")
         | 
| 66 | 
            +
                allnli_eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev")
         | 
| 67 | 
            +
                print("Loaded allnli dataset.")
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                print("Loading paq dataset...")
         | 
| 70 | 
            +
                paq_dataset = load_dataset("sentence-transformers/paq", split="train")
         | 
| 71 | 
            +
                paq_dataset_dict = paq_dataset.train_test_split(test_size=10_000, seed=12)
         | 
| 72 | 
            +
                paq_train_dataset: Dataset = paq_dataset_dict["train"]
         | 
| 73 | 
            +
                paq_eval_dataset: Dataset = paq_dataset_dict["test"]
         | 
| 74 | 
            +
                print("Loaded paq dataset.")
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                print("Loading trivia_qa dataset...")
         | 
| 77 | 
            +
                trivia_qa = load_dataset("sentence-transformers/trivia-qa", split="train")
         | 
| 78 | 
            +
                trivia_qa_dataset_dict = trivia_qa.train_test_split(test_size=5_000, seed=12)
         | 
| 79 | 
            +
                trivia_qa_train_dataset: Dataset = trivia_qa_dataset_dict["train"]
         | 
| 80 | 
            +
                trivia_qa_eval_dataset: Dataset = trivia_qa_dataset_dict["test"]
         | 
| 81 | 
            +
                print("Loaded trivia_qa dataset.")
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                print("Loading msmarco_10m dataset...")
         | 
| 84 | 
            +
                msmarco_10m_dataset = load_dataset("bclavie/msmarco-10m-triplets", split="train")
         | 
| 85 | 
            +
                msmarco_10m_dataset_dict = msmarco_10m_dataset.train_test_split(test_size=10_000, seed=12)
         | 
| 86 | 
            +
                msmarco_10m_train_dataset: Dataset = msmarco_10m_dataset_dict["train"]
         | 
| 87 | 
            +
                msmarco_10m_eval_dataset: Dataset = msmarco_10m_dataset_dict["test"]
         | 
| 88 | 
            +
                print("Loaded msmarco_10m dataset.")
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                print("Loading swim_ir dataset...")
         | 
| 91 | 
            +
                swim_ir_dataset = load_dataset("nthakur/swim-ir-monolingual", "en", split="train").select_columns(["query", "text"])
         | 
| 92 | 
            +
                swim_ir_dataset_dict = swim_ir_dataset.train_test_split(test_size=10_000, seed=12)
         | 
| 93 | 
            +
                swim_ir_train_dataset: Dataset = swim_ir_dataset_dict["train"]
         | 
| 94 | 
            +
                swim_ir_eval_dataset: Dataset = swim_ir_dataset_dict["test"]
         | 
| 95 | 
            +
                print("Loaded swim_ir dataset.")
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                # NOTE: 20 negatives
         | 
| 98 | 
            +
                print("Loading pubmedqa dataset...")
         | 
| 99 | 
            +
                pubmedqa_dataset = load_dataset("sentence-transformers/pubmedqa", "triplet-20", split="train")
         | 
| 100 | 
            +
                pubmedqa_dataset_dict = pubmedqa_dataset.train_test_split(test_size=100, seed=12)
         | 
| 101 | 
            +
                pubmedqa_train_dataset: Dataset = pubmedqa_dataset_dict["train"]
         | 
| 102 | 
            +
                pubmedqa_eval_dataset: Dataset = pubmedqa_dataset_dict["test"]
         | 
| 103 | 
            +
                print("Loaded pubmedqa dataset.")
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                # NOTE: A lot of overlap with anchor/positives
         | 
| 106 | 
            +
                print("Loading miracl dataset...")
         | 
| 107 | 
            +
                miracl_dataset = load_dataset("sentence-transformers/miracl", "en-triplet-all", split="train")
         | 
| 108 | 
            +
                miracl_dataset_dict = miracl_dataset.train_test_split(test_size=10_000, seed=12)
         | 
| 109 | 
            +
                miracl_train_dataset: Dataset = miracl_dataset_dict["train"]
         | 
| 110 | 
            +
                miracl_eval_dataset: Dataset = miracl_dataset_dict["test"]
         | 
| 111 | 
            +
                print("Loaded miracl dataset.")
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                # NOTE: A lot of overlap with anchor/positives
         | 
| 114 | 
            +
                print("Loading mldr dataset...")
         | 
| 115 | 
            +
                mldr_dataset = load_dataset("sentence-transformers/mldr", "en-triplet-all", split="train")
         | 
| 116 | 
            +
                mldr_dataset_dict = mldr_dataset.train_test_split(test_size=10_000, seed=12)
         | 
| 117 | 
            +
                mldr_train_dataset: Dataset = mldr_dataset_dict["train"]
         | 
| 118 | 
            +
                mldr_eval_dataset: Dataset = mldr_dataset_dict["test"]
         | 
| 119 | 
            +
                print("Loaded mldr dataset.")
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                # NOTE: A lot of overlap with anchor/positives
         | 
| 122 | 
            +
                print("Loading mr_tydi dataset...")
         | 
| 123 | 
            +
                mr_tydi_dataset = load_dataset("sentence-transformers/mr-tydi", "en-triplet-all", split="train")
         | 
| 124 | 
            +
                mr_tydi_dataset_dict = mr_tydi_dataset.train_test_split(test_size=10_000, seed=12)
         | 
| 125 | 
            +
                mr_tydi_train_dataset: Dataset = mr_tydi_dataset_dict["train"]
         | 
| 126 | 
            +
                mr_tydi_eval_dataset: Dataset = mr_tydi_dataset_dict["test"]
         | 
| 127 | 
            +
                print("Loaded mr_tydi dataset.")
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                train_dataset = DatasetDict({
         | 
| 130 | 
            +
                    "gooaq": gooaq_train_dataset,
         | 
| 131 | 
            +
                    "msmarco": msmarco_train_dataset,
         | 
| 132 | 
            +
                    "squad": squad_train_dataset,
         | 
| 133 | 
            +
                    "s2orc": s2orc_train_dataset,
         | 
| 134 | 
            +
                    "allnli": allnli_train_dataset,
         | 
| 135 | 
            +
                    "paq": paq_train_dataset,
         | 
| 136 | 
            +
                    "trivia_qa": trivia_qa_train_dataset,
         | 
| 137 | 
            +
                    "msmarco_10m": msmarco_10m_train_dataset,
         | 
| 138 | 
            +
                    "swim_ir": swim_ir_train_dataset,
         | 
| 139 | 
            +
                    "pubmedqa": pubmedqa_train_dataset,
         | 
| 140 | 
            +
                    "miracl": miracl_train_dataset,
         | 
| 141 | 
            +
                    "mldr": mldr_train_dataset,
         | 
| 142 | 
            +
                    "mr_tydi": mr_tydi_train_dataset,
         | 
| 143 | 
            +
                })
         | 
| 144 | 
            +
                eval_dataset = {
         | 
| 145 | 
            +
                    "gooaq": gooaq_eval_dataset,
         | 
| 146 | 
            +
                    "msmarco": msmarco_eval_dataset,
         | 
| 147 | 
            +
                    "squad": squad_eval_dataset,
         | 
| 148 | 
            +
                    "s2orc": s2orc_eval_dataset,
         | 
| 149 | 
            +
                    "allnli": allnli_eval_dataset,
         | 
| 150 | 
            +
                    "paq": paq_eval_dataset,
         | 
| 151 | 
            +
                    "trivia_qa": trivia_qa_eval_dataset,
         | 
| 152 | 
            +
                    "msmarco_10m": msmarco_10m_eval_dataset,
         | 
| 153 | 
            +
                    "swim_ir": swim_ir_eval_dataset,
         | 
| 154 | 
            +
                    "pubmedqa": pubmedqa_eval_dataset,
         | 
| 155 | 
            +
                    "miracl": miracl_eval_dataset,
         | 
| 156 | 
            +
                    "mldr": mldr_eval_dataset,
         | 
| 157 | 
            +
                    "mr_tydi": mr_tydi_eval_dataset,
         | 
| 158 | 
            +
                }
         | 
| 159 | 
            +
                print(train_dataset)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                # 4. Define a loss function
         | 
| 162 | 
            +
                loss = MultipleNegativesRankingLoss(model)
         | 
| 163 | 
            +
                loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024])
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                # 5. (Optional) Specify training arguments
         | 
| 166 | 
            +
                run_name = "static-retrieval-mrl-en-v1"
         | 
| 167 | 
            +
                args = SentenceTransformerTrainingArguments(
         | 
| 168 | 
            +
                    # Required parameter:
         | 
| 169 | 
            +
                    output_dir=f"models/{run_name}",
         | 
| 170 | 
            +
                    # Optional training parameters:
         | 
| 171 | 
            +
                    num_train_epochs=1,
         | 
| 172 | 
            +
                    per_device_train_batch_size=2048,
         | 
| 173 | 
            +
                    per_device_eval_batch_size=2048,
         | 
| 174 | 
            +
                    learning_rate=2e-1,
         | 
| 175 | 
            +
                    warmup_ratio=0.1,
         | 
| 176 | 
            +
                    fp16=False,  # Set to False if you get an error that your GPU can't run on FP16
         | 
| 177 | 
            +
                    bf16=True,  # Set to True if you have a GPU that supports BF16
         | 
| 178 | 
            +
                    batch_sampler=BatchSamplers.NO_DUPLICATES,  # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
         | 
| 179 | 
            +
                    multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL,
         | 
| 180 | 
            +
                    # Optional tracking/debugging parameters:
         | 
| 181 | 
            +
                    eval_strategy="steps",
         | 
| 182 | 
            +
                    eval_steps=250,
         | 
| 183 | 
            +
                    save_strategy="steps",
         | 
| 184 | 
            +
                    save_steps=250,
         | 
| 185 | 
            +
                    save_total_limit=2,
         | 
| 186 | 
            +
                    logging_steps=250,
         | 
| 187 | 
            +
                    logging_first_step=True,
         | 
| 188 | 
            +
                    run_name=run_name,  # Will be used in W&B if `wandb` is installed
         | 
| 189 | 
            +
                )
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                # 6. (Optional) Create an evaluator & evaluate the base model
         | 
| 192 | 
            +
                evaluator = NanoBEIREvaluator()
         | 
| 193 | 
            +
                evaluator(model)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                # 7. Create a trainer & train
         | 
| 196 | 
            +
                trainer = SentenceTransformerTrainer(
         | 
| 197 | 
            +
                    model=model,
         | 
| 198 | 
            +
                    args=args,
         | 
| 199 | 
            +
                    train_dataset=train_dataset,
         | 
| 200 | 
            +
                    eval_dataset=eval_dataset,
         | 
| 201 | 
            +
                    loss=loss,
         | 
| 202 | 
            +
                    evaluator=evaluator,
         | 
| 203 | 
            +
                )
         | 
| 204 | 
            +
                trainer.train()
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                # (Optional) Evaluate the trained model on the evaluator after training
         | 
| 207 | 
            +
                evaluator(model)
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                # 8. Save the trained model
         | 
| 210 | 
            +
                model.save_pretrained(f"models/{run_name}/final")
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                # 9. (Optional) Push it to the Hugging Face Hub
         | 
| 213 | 
            +
                model.push_to_hub(run_name, private=True)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
            if __name__ == "__main__":
         | 
| 216 | 
            +
                main()
         | 

