Update README.md
Browse files
README.md
CHANGED
|
@@ -73,33 +73,6 @@ print("Sentence embeddings:")
|
|
| 73 |
print(sentence_embeddings)
|
| 74 |
```
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
## Full Model Architecture
|
| 79 |
-
```
|
| 80 |
-
SentenceTransformer(
|
| 81 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
| 82 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
| 83 |
-
)
|
| 84 |
-
```
|
| 85 |
-
|
| 86 |
-
## Citing & Authors
|
| 87 |
-
|
| 88 |
-
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
| 89 |
-
|
| 90 |
-
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
| 91 |
-
```bibtex
|
| 92 |
-
@inproceedings{reimers-2019-sentence-bert,
|
| 93 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 94 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
| 95 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 96 |
-
month = "11",
|
| 97 |
-
year = "2019",
|
| 98 |
-
publisher = "Association for Computational Linguistics",
|
| 99 |
-
url = "http://arxiv.org/abs/1908.10084",
|
| 100 |
-
}
|
| 101 |
-
```
|
| 102 |
-
|
| 103 |
## Usage (Text Embeddings Inference (TEI))
|
| 104 |
|
| 105 |
[Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embeddings models.
|
|
@@ -130,4 +103,29 @@ curl -s http://localhost:8080/v1/embeddings \
|
|
| 130 |
}'
|
| 131 |
```
|
| 132 |
|
| 133 |
-
Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
print(sentence_embeddings)
|
| 74 |
```
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
## Usage (Text Embeddings Inference (TEI))
|
| 77 |
|
| 78 |
[Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embeddings models.
|
|
|
|
| 103 |
}'
|
| 104 |
```
|
| 105 |
|
| 106 |
+
Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead.
|
| 107 |
+
|
| 108 |
+
## Full Model Architecture
|
| 109 |
+
```
|
| 110 |
+
SentenceTransformer(
|
| 111 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
| 112 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
| 113 |
+
)
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
## Citing & Authors
|
| 117 |
+
|
| 118 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
| 119 |
+
|
| 120 |
+
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
| 121 |
+
```bibtex
|
| 122 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 123 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 124 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 125 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 126 |
+
month = "11",
|
| 127 |
+
year = "2019",
|
| 128 |
+
publisher = "Association for Computational Linguistics",
|
| 129 |
+
url = "http://arxiv.org/abs/1908.10084",
|
| 130 |
+
}
|
| 131 |
+
```
|