Model Card with TensorFlow example
Browse filesThis PRs adds a TensorFlow example that mimics the PT example, that uses the newly added TF weights.
PT example outputs:
```
0.9156370162963867 Around 9 Million people live in London
0.49475783109664917 London is known for its financial district
```
TF example outputs:
```
0.9156371355056763 Around 9 Million people live in London
0.49475765228271484 London is known for its financial district
```
README.md
CHANGED
|
@@ -46,7 +46,7 @@ for doc, score in doc_score_pairs:
|
|
| 46 |
```
|
| 47 |
|
| 48 |
|
| 49 |
-
## Usage (HuggingFace Transformers)
|
| 50 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings.
|
| 51 |
|
| 52 |
```python
|
|
@@ -56,7 +56,7 @@ import torch.nn.functional as F
|
|
| 56 |
|
| 57 |
#Mean Pooling - Take average of all tokens
|
| 58 |
def mean_pooling(model_output, attention_mask):
|
| 59 |
-
token_embeddings = model_output.last_hidden_state
|
| 60 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 61 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 62 |
|
|
@@ -105,6 +105,63 @@ for doc, score in doc_score_pairs:
|
|
| 105 |
print(score, doc)
|
| 106 |
```
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
## Technical Details
|
| 109 |
|
| 110 |
In the following some technical details how this model must be used:
|
|
|
|
| 46 |
```
|
| 47 |
|
| 48 |
|
| 49 |
+
## PyTorch Usage (HuggingFace Transformers)
|
| 50 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings.
|
| 51 |
|
| 52 |
```python
|
|
|
|
| 56 |
|
| 57 |
#Mean Pooling - Take average of all tokens
|
| 58 |
def mean_pooling(model_output, attention_mask):
|
| 59 |
+
token_embeddings = model_output.last_hidden_state
|
| 60 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 61 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 62 |
|
|
|
|
| 105 |
print(score, doc)
|
| 106 |
```
|
| 107 |
|
| 108 |
+
## TensorFlow Usage (HuggingFace Transformers)
|
| 109 |
+
Similarly to the PyTorch example above, to use the model with TensorFlow you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings.
|
| 110 |
+
|
| 111 |
+
```python
|
| 112 |
+
from transformers import AutoTokenizer, TFAutoModel
|
| 113 |
+
import tensorflow as tf
|
| 114 |
+
|
| 115 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
| 116 |
+
def mean_pooling(model_output, attention_mask):
|
| 117 |
+
token_embeddings = model_output.last_hidden_state
|
| 118 |
+
input_mask_expanded = tf.cast(tf.tile(tf.expand_dims(attention_mask, -1), [1, 1, token_embeddings.shape[-1]]), tf.float32)
|
| 119 |
+
return tf.math.reduce_sum(token_embeddings * input_mask_expanded, 1) / tf.math.maximum(tf.math.reduce_sum(input_mask_expanded, 1), 1e-9)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
#Encode text
|
| 123 |
+
def encode(texts):
|
| 124 |
+
# Tokenize sentences
|
| 125 |
+
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='tf')
|
| 126 |
+
|
| 127 |
+
# Compute token embeddings
|
| 128 |
+
model_output = model(**encoded_input, return_dict=True)
|
| 129 |
+
|
| 130 |
+
# Perform pooling
|
| 131 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 132 |
+
|
| 133 |
+
# Normalize embeddings
|
| 134 |
+
embeddings = tf.math.l2_normalize(embeddings, axis=1)
|
| 135 |
+
|
| 136 |
+
return embeddings
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# Sentences we want sentence embeddings for
|
| 140 |
+
query = "How many people live in London?"
|
| 141 |
+
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
|
| 142 |
+
|
| 143 |
+
# Load model from HuggingFace Hub
|
| 144 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
|
| 145 |
+
model = TFAutoModel.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
|
| 146 |
+
|
| 147 |
+
#Encode query and docs
|
| 148 |
+
query_emb = encode(query)
|
| 149 |
+
doc_emb = encode(docs)
|
| 150 |
+
|
| 151 |
+
#Compute dot score between query and all document embeddings
|
| 152 |
+
scores = (query_emb @ tf.transpose(doc_emb))[0].numpy().tolist()
|
| 153 |
+
|
| 154 |
+
#Combine docs & scores
|
| 155 |
+
doc_score_pairs = list(zip(docs, scores))
|
| 156 |
+
|
| 157 |
+
#Sort by decreasing score
|
| 158 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
|
| 159 |
+
|
| 160 |
+
#Output passages & scores
|
| 161 |
+
for doc, score in doc_score_pairs:
|
| 162 |
+
print(score, doc)
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
## Technical Details
|
| 166 |
|
| 167 |
In the following some technical details how this model must be used:
|