File size: 1,966 Bytes
7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 7be3023 b4a77d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: cc-by-nc-4.0
language:
- en
pipeline_tag: depth-estimation
library_name: depth-anything-v2
tags:
- depth
- relative depth
---
# Depth-Anything-V2-Large
## Introduction
Depth Anything V2 is trained from 595K synthetic labeled images and 62M+ real unlabeled images, providing the most capable monocular depth estimation (MDE) model with the following features:
- more fine-grained details than Depth Anything V1
- more robust than Depth Anything V1 and SD-based models (e.g., Marigold, Geowizard)
- more efficient (10x faster) and more lightweight than SD-based models
- impressive fine-tuned performance with our pre-trained models
## Installation
```bash
git clone https://huggingface.co/spaces/depth-anything/Depth-Anything-V2
cd Depth-Anything-V2
pip install -r requirements.txt
```
## Usage
Download the [model](https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true) first and put it under the `checkpoints` directory.
```python
import cv2
import torch
from depth_anything_v2.dpt import DepthAnythingV2
model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024])
model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vitl.pth', map_location='cpu'))
model.eval()
raw_img = cv2.imread('your/image/path')
depth = model.infer_image(raw_img) # HxW raw depth map
```
## Citation
If you find this project useful, please consider citing:
```bibtex
@article{depth_anything_v2,
title={Depth Anything V2},
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
journal={arXiv:2406.09414},
year={2024}
}
@inproceedings{depth_anything_v1,
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
booktitle={CVPR},
year={2024}
} |