Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,45 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
base_model:
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- mistralai/Mistral-7B-Instruct-v0.3
|
5 |
+
datasets:
|
6 |
+
- samzheng/SymbolicCode-CoT
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
pipeline_tag: question-answering
|
10 |
+
---
|
11 |
+
model_name: "Mistral-7B-Math (Merged FP16 Checkpoint)" \
|
12 |
+
repo: "samzheng/mistral-7b-math-merged"\
|
13 |
base_model:
|
14 |
+
name: "unsloth/mistral-7b-instruct-v0.3-bnb-4bit"
|
15 |
+
url: "https://huggingface.co/unsloth/mistral-7b-instruct-v0.3-bnb-4bit"\
|
16 |
+
task: "Grade-school symbolic math word problems → Python code answers"\
|
17 |
+
fine_tuning:
|
18 |
+
method: "LoRA adapters (r=16, α=16, dropout=0) merged into the base weights, FP16 precision"
|
19 |
+
parameters:
|
20 |
+
r: 16
|
21 |
+
alpha: 16
|
22 |
+
dropout: 0\
|
23 |
+
dataset:
|
24 |
+
description: "6.7k Alpaca-formatted Q/A pairs with chain-of-thought + code"
|
25 |
+
splits:
|
26 |
+
- "symboliccode_cot_train"
|
27 |
+
- "symboliccode_cot_validation"\
|
28 |
+
language: python \
|
29 |
+
code:
|
30 |
+
|
31 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
"samzheng/mistral-7b-math-merged",
|
34 |
+
torch_dtype="auto", device_map="auto"
|
35 |
+
)
|
36 |
+
tok = AutoTokenizer.from_pretrained("samzheng/mistral-7b-math-merged")
|
37 |
+
|
38 |
+
prompt = """Below is an instruction that describes a task...
|
39 |
+
### Instruction: Solve the problem using step-by-step reasoning and provide Python code.
|
40 |
+
|
41 |
+
### Input: Solve for x: 2x + 5 = 17
|
42 |
+
|
43 |
+
### Response:
|
44 |
+
"""
|
45 |
+
print(tok.decode(model.generate(**tok(prompt, return_tensors="pt").to(model.device),max_new_tokens=256)[0], skip_special_tokens=True))
|