|
from typing import Dict, Any, List |
|
import torch |
|
from transformers import T5ForConditionalGeneration, T5Tokenizer |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
try: |
|
self.model = T5ForConditionalGeneration.from_pretrained(path).to(self.device) |
|
self.tokenizer = T5Tokenizer.from_pretrained(path) |
|
except Exception as e: |
|
print(f"Error loading model or tokenizer from path {path}: {e}") |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
inputs = data.get("inputs", "") |
|
if not inputs: |
|
return [{"error": "No inputs provided"}] |
|
|
|
tokenized_input = self.tokenizer(inputs, return_tensors="pt", truncation=True, max_length=512, padding="max_length") |
|
tokenized_input = tokenized_input.to(self.device) |
|
|
|
summary_ids = self.model.generate(**tokenized_input, max_length=400, do_sample=True, top_p=0.8) |
|
|
|
summary_text = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
|
|
return [{"summary": summary_text}] |