Update README.md
Browse files
README.md
CHANGED
|
@@ -38,19 +38,12 @@ E5-EG-small (E5 EverGreen - Large) is an efficient multilingual text classificat
|
|
| 38 |
## How to Get Started with the Model
|
| 39 |
|
| 40 |
```python
|
| 41 |
-
from transformers import
|
| 42 |
import torch
|
| 43 |
-
import time
|
| 44 |
|
| 45 |
# Load model and tokenizer
|
| 46 |
-
model_name = "s-nlp/E5-
|
| 47 |
-
|
| 48 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 49 |
-
|
| 50 |
-
# For optimal performance, use GPU if available
|
| 51 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 52 |
-
model = model.to(device)
|
| 53 |
-
model.eval()
|
| 54 |
|
| 55 |
# Batch classification example
|
| 56 |
questions = [
|
|
@@ -58,35 +51,13 @@ questions = [
|
|
| 58 |
"Who won the latest World Cup?",
|
| 59 |
"What is the speed of light?",
|
| 60 |
"What is the current Bitcoin price?"
|
|
|
|
|
|
|
| 61 |
]
|
| 62 |
|
| 63 |
-
# Tokenize all questions
|
| 64 |
-
inputs = tokenizer(
|
| 65 |
-
questions,
|
| 66 |
-
return_tensors="pt",
|
| 67 |
-
padding=True,
|
| 68 |
-
truncation=True,
|
| 69 |
-
max_length=64
|
| 70 |
-
).to(device)
|
| 71 |
-
|
| 72 |
# Classify
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
outputs = model(**inputs)
|
| 76 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 77 |
-
predicted_classes = torch.argmax(predictions, dim=-1)
|
| 78 |
-
|
| 79 |
-
inference_time = (time.time() - start_time) * 1000 # ms
|
| 80 |
-
|
| 81 |
-
# Display results
|
| 82 |
-
class_names = ["Immutable", "Mutable"]
|
| 83 |
-
for i, question in enumerate(questions):
|
| 84 |
-
print(f"Q: {question}")
|
| 85 |
-
print(f" Classification: {class_names[predicted_classes[i].item()]}")
|
| 86 |
-
print(f" Confidence: {predictions[i][predicted_classes[i]].item():.2f}")
|
| 87 |
-
|
| 88 |
-
print(f"\nTotal inference time: {inference_time:.2f}ms")
|
| 89 |
-
print(f"Average per question: {inference_time/len(questions):.2f}ms")
|
| 90 |
```
|
| 91 |
|
| 92 |
## Training Details
|
|
|
|
| 38 |
## How to Get Started with the Model
|
| 39 |
|
| 40 |
```python
|
| 41 |
+
from transformers import pipeline
|
| 42 |
import torch
|
|
|
|
| 43 |
|
| 44 |
# Load model and tokenizer
|
| 45 |
+
model_name = "s-nlp/E5-EverGreen-Multilingual-Large"
|
| 46 |
+
pipe = pipeline("text-classification", model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
# Batch classification example
|
| 49 |
questions = [
|
|
|
|
| 51 |
"Who won the latest World Cup?",
|
| 52 |
"What is the speed of light?",
|
| 53 |
"What is the current Bitcoin price?"
|
| 54 |
+
"How old is Elon Musk",
|
| 55 |
+
"How old was Leo Tolstoy when he died?"
|
| 56 |
]
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
# Classify
|
| 59 |
+
results = pipe(questions)
|
| 60 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
```
|
| 62 |
|
| 63 |
## Training Details
|