Update README.md
Browse files
README.md
CHANGED
|
@@ -35,13 +35,7 @@ ColorizeNet is an image colorization model based on ControlNet, trained using th
|
|
| 35 |
|
| 36 |
- **Repository:** [https://github.com/rensortino/ColorizeNet]
|
| 37 |
-
|
| 38 |
-
##
|
| 39 |
-
|
| 40 |
-
Use the code below to get started with the model.
|
| 41 |
-
|
| 42 |
-
[More Information Needed]
|
| 43 |
-
|
| 44 |
-
## Training Details
|
| 45 |
|
| 46 |
### Training Data
|
| 47 |
|
|
@@ -51,6 +45,90 @@ The model has been trained on COCO, using all the images in the dataset and conv
|
|
| 51 |
|
| 52 |
[https://huggingface.co/datasets/detection-datasets/coco]
|
| 53 |
|
| 54 |
-
###
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
- **Repository:** [https://github.com/rensortino/ColorizeNet]
|
| 37 |
-
|
| 38 |
+
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
### Training Data
|
| 41 |
|
|
|
|
| 45 |
|
| 46 |
[https://huggingface.co/datasets/detection-datasets/coco]
|
| 47 |
|
| 48 |
+
### Run the model
|
| 49 |
+
|
| 50 |
+
Instantiate the model and load its configuration and weights
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
import random
|
| 54 |
+
|
| 55 |
+
import cv2
|
| 56 |
+
import einops
|
| 57 |
+
import numpy as np
|
| 58 |
+
import torch
|
| 59 |
+
from pytorch_lightning import seed_everything
|
| 60 |
+
|
| 61 |
+
from utils.data import HWC3, apply_color, resize_image
|
| 62 |
+
from utils.ddim import DDIMSampler
|
| 63 |
+
from utils.model import create_model, load_state_dict
|
| 64 |
+
|
| 65 |
+
model = create_model('./models/cldm_v21.yaml').cpu()
|
| 66 |
+
model.load_state_dict(load_state_dict(
|
| 67 |
+
'lightning_logs/version_6/checkpoints/colorizenet-sd21.ckpt', location='cuda'))
|
| 68 |
+
model = model.cuda()
|
| 69 |
+
ddim_sampler = DDIMSampler(model)
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
Read the image to be colorized
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
input_image = cv2.imread("sample_data/sample1_bw.jpg")
|
| 76 |
+
input_image = HWC3(input_image)
|
| 77 |
+
img = resize_image(input_image, resolution=512)
|
| 78 |
+
H, W, C = img.shape
|
| 79 |
+
|
| 80 |
+
num_samples = 1
|
| 81 |
+
control = torch.from_numpy(img.copy()).float().cuda() / 255.0
|
| 82 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 83 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
Prepare the input and parameters of the model
|
| 87 |
+
|
| 88 |
+
```python
|
| 89 |
+
seed = 1294574436
|
| 90 |
+
seed_everything(seed)
|
| 91 |
+
prompt = "Colorize this image"
|
| 92 |
+
n_prompt = ""
|
| 93 |
+
guess_mode = False
|
| 94 |
+
strength = 1.0
|
| 95 |
+
eta = 0.0
|
| 96 |
+
ddim_steps = 20
|
| 97 |
+
scale = 9.0
|
| 98 |
+
|
| 99 |
+
cond = {"c_concat": [control], "c_crossattn": [
|
| 100 |
+
model.get_learned_conditioning([prompt] * num_samples)]}
|
| 101 |
+
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [
|
| 102 |
+
model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 103 |
+
shape = (4, H // 8, W // 8)
|
| 104 |
+
|
| 105 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
| 106 |
+
[strength] * 13)
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
Sample and post-process the results
|
| 110 |
+
|
| 111 |
+
```python
|
| 112 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 113 |
+
shape, cond, verbose=False, eta=eta,
|
| 114 |
+
unconditional_guidance_scale=scale,
|
| 115 |
+
unconditional_conditioning=un_cond)
|
| 116 |
+
|
| 117 |
+
x_samples = model.decode_first_stage(samples)
|
| 118 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c')
|
| 119 |
+
* 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 120 |
+
|
| 121 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 122 |
+
colored_results = [apply_color(img, result) for result in results]
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
## Results
|
| 126 |
+
|
| 127 |
+
BW Input | Colorized
|
| 128 |
+
:-------------------------:|:-------------------------:
|
| 129 |
+
 | 
|
| 130 |
+
 | 
|
| 131 |
+
 | 
|
| 132 |
+
 | 
|
| 133 |
+
 | 
|
| 134 |
+
 | 
|