rosyvs
commited on
Commit
·
e404b97
1
Parent(s):
f60eaa1
new READMe, tidy up main and add hparams
Browse files- README.md +35 -7
- hparams.yaml +50 -0
- main.py +25 -194
README.md
CHANGED
|
@@ -8,12 +8,13 @@ Model trained in int8 with LoRA
|
|
| 8 |
|
| 9 |
Usage:
|
| 10 |
|
| 11 |
-
prepare pipeline,
|
| 12 |
|
| 13 |
```
|
| 14 |
asr_model=prepare_pipeline(
|
| 15 |
model_dir='.', # wherever you save the model
|
| 16 |
-
|
|
|
|
| 17 |
'num_beams':1,
|
| 18 |
'repetition_penalty':1,
|
| 19 |
'do_sample':False
|
|
@@ -25,8 +26,35 @@ run ASR:
|
|
| 25 |
asr_model(audio_path)
|
| 26 |
```
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
Usage:
|
| 10 |
|
| 11 |
+
prepare pipeline, providing any custom generate_kwargs supprted by https://huggingface.co/docs/transformers/v4.40.0/en/main_classes/text_generation#transformers.GenerationConfig
|
| 12 |
|
| 13 |
```
|
| 14 |
asr_model=prepare_pipeline(
|
| 15 |
model_dir='.', # wherever you save the model
|
| 16 |
+
generate_kwargs={
|
| 17 |
+
'max_new_tokens':112,
|
| 18 |
'num_beams':1,
|
| 19 |
'repetition_penalty':1,
|
| 20 |
'do_sample':False
|
|
|
|
| 26 |
asr_model(audio_path)
|
| 27 |
```
|
| 28 |
|
| 29 |
+
run ASR on full directory in `audio_dir`:
|
| 30 |
+
If generate_kwargs not specified, will give you (deterministic) greedy decoding with up to 112 tokens generated, no repetition penalty
|
| 31 |
+
|
| 32 |
+
```
|
| 33 |
+
ASRdirWhisat(
|
| 34 |
+
audio_dir,
|
| 35 |
+
out_dir = '../whisat_results/',
|
| 36 |
+
model_dir=".",
|
| 37 |
+
)
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
Training information:
|
| 42 |
+
Training script: tune_hf_whisper.py
|
| 43 |
+
Training hyperparameters: hparams.yaml
|
| 44 |
+
Training data manifest: PUBLIC_KIDS_TRAIN_v4_deduped.csv
|
| 45 |
+
|
| 46 |
+
Note: to recreate this training you will need to acquire the following public datasets:
|
| 47 |
+
MyST (myst-v0.4.2)
|
| 48 |
+
CuKids
|
| 49 |
+
CSLU
|
| 50 |
+
|
| 51 |
+
and ensure they are stored at paths consistend with those in the data manifest above.
|
| 52 |
+
|
| 53 |
+
Reference:
|
| 54 |
+
@inproceedings{southwell2024,
|
| 55 |
+
title={Automatic speech recognition tuned for child speech in the classroom},
|
| 56 |
+
author={ Southwell, Rosy and Ward , Wayne and Trinh , Viet Anh and Clevenger, Charis and Clevenger, Clay and Watts, Emily and Reitman, Jason and D’Mello, Sidney and Whitehill, Jacob},
|
| 57 |
+
booktitle={{IEEE} International Conference on Acoustics, Speech and Signal Processing
|
| 58 |
+
{ICASSP} 2024, Seoul, South Korea, April 14-19, 2024},
|
| 59 |
+
year={2024},
|
| 60 |
+
}
|
hparams.yaml
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters to set
|
| 2 |
+
|
| 3 |
+
model_cfg:
|
| 4 |
+
init_from_hub_path: openai/whisper-large-v2
|
| 5 |
+
# lang: None
|
| 6 |
+
# apply_spec_augment: True
|
| 7 |
+
# mask_time_prob: 0.05
|
| 8 |
+
# mask_feature_prob: 0.05
|
| 9 |
+
# mask_time_length: 40
|
| 10 |
+
# mask_feature_length: 30
|
| 11 |
+
# mask_time_min_masks: 2
|
| 12 |
+
# mask_feature_min_masks: 2
|
| 13 |
+
|
| 14 |
+
data_cfg:
|
| 15 |
+
data_root: ~/corpora/
|
| 16 |
+
train_manif: ~/corpora/data_manifests/ASR/PUBLIC_KIDS_TRAIN_v4_deduped.csv
|
| 17 |
+
val_manif: # small private dataset of classroom speech, only affects training if load_best_model_at_end: True
|
| 18 |
+
test_manif: # small private dataset of classroom speech, doesn't affect training
|
| 19 |
+
|
| 20 |
+
experiment_cfg:
|
| 21 |
+
OUT_DIR: train/whisat/save/publicKS_LoRA_int8
|
| 22 |
+
use_lora: True
|
| 23 |
+
use_int8: True
|
| 24 |
+
|
| 25 |
+
train_cfg:
|
| 26 |
+
training_args:
|
| 27 |
+
output_dir: !ref <experiment_cfg[OUT_DIR]>
|
| 28 |
+
per_device_train_batch_size: 32 # 64
|
| 29 |
+
learning_rate: 0.0001 # 1e-5 orig, 1e-3 lora
|
| 30 |
+
warmup_steps: 50 # 500 orig 50 lora
|
| 31 |
+
num_train_epochs: 1
|
| 32 |
+
fp16: True # True
|
| 33 |
+
evaluation_strategy: steps # or epochs
|
| 34 |
+
per_device_eval_batch_size: 4
|
| 35 |
+
predict_with_generate: True
|
| 36 |
+
generation_max_length: 112
|
| 37 |
+
save_steps: 500
|
| 38 |
+
eval_steps: 500
|
| 39 |
+
eval_accumulation_steps: 2
|
| 40 |
+
logging_steps: 25
|
| 41 |
+
report_to:
|
| 42 |
+
- tensorboard
|
| 43 |
+
load_best_model_at_end: False
|
| 44 |
+
metric_for_best_model: wer
|
| 45 |
+
greater_is_better: False
|
| 46 |
+
push_to_hub: False
|
| 47 |
+
remove_unused_columns: False # required as the PeftModel forward doesn't have the signature of the wrapped model's forward
|
| 48 |
+
label_names:
|
| 49 |
+
- labels
|
| 50 |
+
|
main.py
CHANGED
|
@@ -14,110 +14,30 @@ import json
|
|
| 14 |
import pandas as pd
|
| 15 |
import csv
|
| 16 |
|
| 17 |
-
def prepare_pipeline(
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
print(device)
|
| 37 |
-
feature_extractor = WhisperFeatureExtractor.from_pretrained(init_from_hub_path)
|
| 38 |
-
# TODO: no need to specify lanf/task?
|
| 39 |
-
tokenizer = WhisperTokenizer.from_pretrained(init_from_hub_path, language=lang, task="transcribe")
|
| 40 |
-
processor = WhisperProcessor.from_pretrained(init_from_hub_path, language=lang, task="transcribe")
|
| 41 |
-
|
| 42 |
-
if use_stock_model:
|
| 43 |
-
model =WhisperForConditionalGeneration.from_pretrained(init_from_hub_path)
|
| 44 |
-
else:
|
| 45 |
-
checkpoint_dir = os.path.expanduser(model_dir)
|
| 46 |
-
# check if PEFT
|
| 47 |
-
if os.path.isdir(os.path.join(checkpoint_dir , "adapter_model")):
|
| 48 |
-
print('...it looks like this model was tuned using PEFT, because adapter_model/ is present in ckpt dir')
|
| 49 |
-
|
| 50 |
-
# checkpoint dir needs adapter model subdir with adapter_model.bin and adapter_confg.json
|
| 51 |
-
peft_config = PeftConfig.from_pretrained(os.path.join(checkpoint_dir , "adapter_model"))
|
| 52 |
-
# except ValueError as e: # if final checkpoint these are in the parent checkpoint direcory
|
| 53 |
-
# peft_config = PeftConfig.from_pretrained(os.path.join(checkpoint_dir ), subfolder=None)
|
| 54 |
-
model = WhisperForConditionalGeneration.from_pretrained(peft_config.base_model_name_or_path,
|
| 55 |
-
load_in_8bit=USE_INT8,
|
| 56 |
-
device_map='auto',
|
| 57 |
-
use_cache=False,
|
| 58 |
-
)
|
| 59 |
-
model = PeftModel.from_pretrained(model, os.path.join(checkpoint_dir,"adapter_model"))
|
| 60 |
-
else:
|
| 61 |
-
model = WhisperForConditionalGeneration.from_pretrained(checkpoint_dir,
|
| 62 |
-
load_in_8bit=USE_INT8,
|
| 63 |
-
device_map='auto',
|
| 64 |
-
use_cache=False,
|
| 65 |
-
)
|
| 66 |
-
model.eval() # needed?
|
| 67 |
-
|
| 68 |
-
pipe = AutomaticSpeechRecognitionPipeline(
|
| 69 |
-
# task="automatic-speech-recognition",
|
| 70 |
-
model=model,
|
| 71 |
-
tokenizer=tokenizer,
|
| 72 |
-
feature_extractor=feature_extractor,
|
| 73 |
-
chunk_length_s=30,
|
| 74 |
-
device=device,
|
| 75 |
-
return_timestamps=False,
|
| 76 |
-
generate_kwargs=generate_opts,
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
return(pipe)
|
| 80 |
-
|
| 81 |
-
def load_model(model_type='large-v2',
|
| 82 |
-
model_dir="../models/whisat-1.2/"):
|
| 83 |
-
|
| 84 |
-
lang='english'
|
| 85 |
-
USE_INT8 = False
|
| 86 |
-
|
| 87 |
-
import warnings
|
| 88 |
-
warnings.filterwarnings("ignore")
|
| 89 |
-
transformers.utils.logging.set_verbosity_error()
|
| 90 |
-
|
| 91 |
-
init_from_hub_path = f"openai/whisper-{model_type}" # TODO infer automatically from PEFT checkpoint
|
| 92 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 93 |
-
print(device)
|
| 94 |
-
feature_extractor = WhisperFeatureExtractor.from_pretrained(init_from_hub_path)
|
| 95 |
-
# TODO: no need to specify lanf/task?
|
| 96 |
-
tokenizer = WhisperTokenizer.from_pretrained(init_from_hub_path, language=lang, task="transcribe")
|
| 97 |
-
processor = WhisperProcessor.from_pretrained(init_from_hub_path, language=lang, task="transcribe")
|
| 98 |
-
|
| 99 |
-
checkpoint_dir = os.path.expanduser(model_dir)
|
| 100 |
-
# checkpoint dir needs adapter model subdir with adapter_model.bin and adapter_confg.json
|
| 101 |
-
peft_config = PeftConfig.from_pretrained(os.path.join(checkpoint_dir , "adapter_model"))
|
| 102 |
-
# except ValueError as e: # if final checkpoint these are in the parent checkpoint direcory
|
| 103 |
-
# peft_config = PeftConfig.from_pretrained(os.path.join(checkpoint_dir ), subfolder=None)
|
| 104 |
-
model = WhisperForConditionalGeneration.from_pretrained(peft_config.base_model_name_or_path,
|
| 105 |
-
load_in_8bit=USE_INT8, # TODO: seemed slightly better without?
|
| 106 |
-
device_map='auto',
|
| 107 |
-
use_cache=False,
|
| 108 |
-
)
|
| 109 |
-
model = PeftModel.from_pretrained(model, os.path.join(checkpoint_dir,"adapter_model"))
|
| 110 |
-
model.eval() # needed?
|
| 111 |
-
return(model, tokenizer, processor)
|
| 112 |
|
| 113 |
def ASRdirWhisat(
|
| 114 |
audio_dir,
|
| 115 |
-
files_to_include=None,
|
| 116 |
out_dir = '../whisat_results/',
|
| 117 |
-
|
| 118 |
-
model_name='whisat-1.2',
|
| 119 |
-
model_dir="../models/whisat-1.2",
|
| 120 |
-
use_stock_model=False,
|
| 121 |
max_new_tokens=112,
|
| 122 |
num_beams=1,
|
| 123 |
do_sample=False,
|
|
@@ -131,54 +51,36 @@ def ASRdirWhisat(
|
|
| 131 |
# Save output in same directory structure as input in specified top-level folder
|
| 132 |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
| 133 |
|
| 134 |
-
#TODO optional arg listing files to transcribe in a list or a text file
|
| 135 |
|
| 136 |
asr_model=prepare_pipeline(
|
| 137 |
model_type=model_type,
|
| 138 |
model_dir=model_dir,
|
| 139 |
use_stock_model=use_stock_model,
|
| 140 |
-
|
| 141 |
'num_beams':num_beams,
|
| 142 |
'repetition_penalty':repetition_penalty,
|
| 143 |
'do_sample':do_sample
|
| 144 |
}
|
| 145 |
)
|
| 146 |
|
| 147 |
-
if use_stock_model: # set some alternative defaults if using stock model
|
| 148 |
-
model_name='whisper_' + model_type + '_stock'
|
| 149 |
|
| 150 |
-
if
|
| 151 |
-
assert isinstance(files_to_include,list) ,'files_to_include should be a list of paths relative to audio_dir to transcribe'
|
| 152 |
-
audio_files=files_to_include
|
| 153 |
-
# audio_files=[]
|
| 154 |
-
# for f in [str(f) for f in Path(audio_dir).rglob("*") if (str(f).rsplit('.',maxsplit=1)[-1] in ['MOV', 'mov', 'WAV', 'wav', 'mp4', 'mp3', 'm4a', 'aac', 'flac', 'alac', 'ogg'] and f.is_file() )]:
|
| 155 |
-
# print(f)
|
| 156 |
-
# if os.path.join(audio_dir,f) in files_to_include:
|
| 157 |
-
# audio_files.append(f)
|
| 158 |
-
# print(f'Including {len(audio_files)} hypotheses matching files_to_include...')
|
| 159 |
-
else:
|
| 160 |
-
audio_files = [str(f) for f in Path(audio_dir).rglob("*") if (str(f).rsplit('.',maxsplit=1)[-1] in ['MOV', 'mov', 'WAV', 'wav', 'mp4', 'mp3', 'm4a', 'aac', 'flac', 'alac', 'ogg'] and f.is_file() )]
|
| 161 |
|
| 162 |
# audio_identifier = os.path.basename(audio_dir)
|
| 163 |
-
|
| 164 |
-
jsonDir = os.path.join(out_dir,f'JSON_{model_name}')
|
| 165 |
-
os.makedirs(asrDir, exist_ok=True)
|
| 166 |
-
os.makedirs(jsonDir, exist_ok=True)
|
| 167 |
|
| 168 |
-
message = "This may take a while on CPU.
|
| 169 |
print(f'Running ASR for {len(audio_files)} files. {message} ...')
|
| 170 |
compute_time=0
|
| 171 |
total_audio_dur=0
|
| 172 |
# get the start time
|
| 173 |
st = time.time()
|
| 174 |
-
|
| 175 |
for audiofile in tqdm(audio_files):
|
| 176 |
sessname=Path(audiofile).stem
|
| 177 |
sesspath=os.path.relpath(os.path.dirname(Path(audiofile).resolve()),Path(audio_dir).resolve())
|
| 178 |
asrFullFile = os.path.join(asrDir,sesspath,f"{sessname}.asr.txt") # full session ASR results file
|
| 179 |
-
jsonFile = os.path.join(jsonDir,sesspath, f"{sessname}.json")
|
| 180 |
os.makedirs(os.path.join(asrDir,sesspath),exist_ok=True)
|
| 181 |
-
os.makedirs(os.path.join(jsonDir,sesspath),exist_ok=True)
|
| 182 |
|
| 183 |
with torch.no_grad():
|
| 184 |
with autocast():
|
|
@@ -188,13 +90,6 @@ def ASRdirWhisat(
|
|
| 188 |
print(f'{e}: {audiofile}')
|
| 189 |
continue
|
| 190 |
|
| 191 |
-
# save full result JSON
|
| 192 |
-
with open(jsonFile, "w") as jf:
|
| 193 |
-
json.dump(result, jf, indent=4)
|
| 194 |
-
# save full result transcript
|
| 195 |
-
# if asr_model.return_timestamps:
|
| 196 |
-
# asrtext = '\n'.join([r['text'].strip() for r in result['chunks']])
|
| 197 |
-
# else:
|
| 198 |
asrtext = result['text']
|
| 199 |
|
| 200 |
with open(asrFullFile,'w') as outfile:
|
|
@@ -204,67 +99,3 @@ def ASRdirWhisat(
|
|
| 204 |
compute_time = (et-st)
|
| 205 |
print(f'...transcription complete in {compute_time:.1f} sec')
|
| 206 |
|
| 207 |
-
|
| 208 |
-
def ASRmanifestWhisat(
|
| 209 |
-
manifest_csv,
|
| 210 |
-
out_csv,
|
| 211 |
-
corpora_root,
|
| 212 |
-
model_type='large-v2',
|
| 213 |
-
model_dir="../models/whisat-1.2",
|
| 214 |
-
use_stock_model=False,
|
| 215 |
-
max_new_tokens=112,
|
| 216 |
-
num_beams=1,
|
| 217 |
-
do_sample=False,
|
| 218 |
-
repetition_penalty=1,
|
| 219 |
-
):
|
| 220 |
-
|
| 221 |
-
## ASR using fine-tuned Transformers Whisper
|
| 222 |
-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
| 223 |
-
# Simply trancsribe each file in the specified folder separately
|
| 224 |
-
# Whisper takes 30-second input. Anything shorter than this will be 0 padded. Longer will be concatenated.
|
| 225 |
-
# Save output in same directory structure as input in specified top-level folder
|
| 226 |
-
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
| 227 |
-
df = pd.read_csv(manifest_csv,keep_default_na=False)
|
| 228 |
-
fieldnames = list(df.columns) + ['asr']
|
| 229 |
-
|
| 230 |
-
asr_model=prepare_pipeline(
|
| 231 |
-
model_type=model_type,
|
| 232 |
-
model_dir=model_dir,
|
| 233 |
-
use_stock_model=use_stock_model,
|
| 234 |
-
generate_opts={'max_new_tokens':max_new_tokens,
|
| 235 |
-
'num_beams':num_beams,
|
| 236 |
-
'repetition_penalty':repetition_penalty,
|
| 237 |
-
'do_sample':do_sample
|
| 238 |
-
}
|
| 239 |
-
)
|
| 240 |
-
|
| 241 |
-
message = "This may take a while on CPU. Go make a cuppa " if asr_model.device.type=="cpu" else "Running on GPU"
|
| 242 |
-
print(f'Running ASR for {len(df)} files. {message} ...')
|
| 243 |
-
compute_time=0
|
| 244 |
-
total_audio_dur=0
|
| 245 |
-
# get the start time
|
| 246 |
-
st = time.time()
|
| 247 |
-
|
| 248 |
-
with open(out_csv, 'w', newline='') as csvfile:
|
| 249 |
-
writer = csv.DictWriter(csvfile, fieldnames=fieldnames,delimiter=',')
|
| 250 |
-
writer.writeheader()
|
| 251 |
-
|
| 252 |
-
for i,row in tqdm(df.iterrows(), total=df.shape[0]):
|
| 253 |
-
|
| 254 |
-
audiofile=row['wav'].replace('$DATAROOT',corpora_root)
|
| 255 |
-
with torch.no_grad():
|
| 256 |
-
with autocast():
|
| 257 |
-
try:
|
| 258 |
-
result = asr_model(audiofile)
|
| 259 |
-
asrtext = result['text']
|
| 260 |
-
except ValueError as e:
|
| 261 |
-
print(f'{e}: {audiofile}')
|
| 262 |
-
asrtext=''
|
| 263 |
-
|
| 264 |
-
row['asr']=asrtext
|
| 265 |
-
writer.writerow( row.to_dict())
|
| 266 |
-
|
| 267 |
-
et = time.time()
|
| 268 |
-
compute_time = (et-st)
|
| 269 |
-
print(f'...transcription complete in {compute_time:.1f} sec')
|
| 270 |
-
|
|
|
|
| 14 |
import pandas as pd
|
| 15 |
import csv
|
| 16 |
|
| 17 |
+
def prepare_pipeline(model_path, generate_kwargs):
|
| 18 |
+
"""Prepare a pipeline for ASR inference
|
| 19 |
+
Args:
|
| 20 |
+
model_path (str): path to model directory / huggingface model name
|
| 21 |
+
generate_kwargs (dict): options to pass to pipeline
|
| 22 |
+
Returns:
|
| 23 |
+
pipeline: ASR pipeline
|
| 24 |
+
"""
|
| 25 |
+
processor = WhisperProcessor.from_pretrained(model_path)
|
| 26 |
+
|
| 27 |
+
asr_pipeline = pipeline(
|
| 28 |
+
"automatic-speech-recognition",
|
| 29 |
+
model=model_path,
|
| 30 |
+
tokenizer=processor.tokenizer,
|
| 31 |
+
feature_extractor=processor.feature_extractor,
|
| 32 |
+
generate_kwargs=generate_kwargs,
|
| 33 |
+
model_kwargs={"load_in_8bit": False},
|
| 34 |
+
device_map='auto')
|
| 35 |
+
return asr_pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
def ASRdirWhisat(
|
| 38 |
audio_dir,
|
|
|
|
| 39 |
out_dir = '../whisat_results/',
|
| 40 |
+
model_dir=".",
|
|
|
|
|
|
|
|
|
|
| 41 |
max_new_tokens=112,
|
| 42 |
num_beams=1,
|
| 43 |
do_sample=False,
|
|
|
|
| 51 |
# Save output in same directory structure as input in specified top-level folder
|
| 52 |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
| 53 |
|
|
|
|
| 54 |
|
| 55 |
asr_model=prepare_pipeline(
|
| 56 |
model_type=model_type,
|
| 57 |
model_dir=model_dir,
|
| 58 |
use_stock_model=use_stock_model,
|
| 59 |
+
generate_kwargs={'max_new_tokens':max_new_tokens,
|
| 60 |
'num_beams':num_beams,
|
| 61 |
'repetition_penalty':repetition_penalty,
|
| 62 |
'do_sample':do_sample
|
| 63 |
}
|
| 64 |
)
|
| 65 |
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
audio_files = [str(f) for f in Path(audio_dir).rglob("*") if (str(f).rsplit('.',maxsplit=1)[-1] in ['MOV', 'mov', 'WAV', 'wav', 'mp4', 'mp3', 'm4a', 'aac', 'flac', 'alac', 'ogg'] and f.is_file() )]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
# audio_identifier = os.path.basename(audio_dir)
|
| 70 |
+
os.makedirs(out_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
message = "This may take a while on CPU." if asr_model.device.type=="cpu" else "Running on GPU"
|
| 73 |
print(f'Running ASR for {len(audio_files)} files. {message} ...')
|
| 74 |
compute_time=0
|
| 75 |
total_audio_dur=0
|
| 76 |
# get the start time
|
| 77 |
st = time.time()
|
| 78 |
+
asrDir = out_dir
|
| 79 |
for audiofile in tqdm(audio_files):
|
| 80 |
sessname=Path(audiofile).stem
|
| 81 |
sesspath=os.path.relpath(os.path.dirname(Path(audiofile).resolve()),Path(audio_dir).resolve())
|
| 82 |
asrFullFile = os.path.join(asrDir,sesspath,f"{sessname}.asr.txt") # full session ASR results file
|
|
|
|
| 83 |
os.makedirs(os.path.join(asrDir,sesspath),exist_ok=True)
|
|
|
|
| 84 |
|
| 85 |
with torch.no_grad():
|
| 86 |
with autocast():
|
|
|
|
| 90 |
print(f'{e}: {audiofile}')
|
| 91 |
continue
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
asrtext = result['text']
|
| 94 |
|
| 95 |
with open(asrFullFile,'w') as outfile:
|
|
|
|
| 99 |
compute_time = (et-st)
|
| 100 |
print(f'...transcription complete in {compute_time:.1f} sec')
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|