File size: 9,091 Bytes
90da011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
#!/usr/bin/env python3
"""
BRITISH PROMPT OPTIMIZER - PRODUCTION VERSION
Aceita QUALQUER idioma e SEMPRE retorna prompt otimizado em inglês britânico
"""
from ollama import Client
import json
import logging
from datetime import datetime
from pathlib import Path
# Configuração
OLLAMA_API_KEY = "08d341f2a47745999691ebbde61a3374.cz1ftaVA-TViLz3vwGZBAFLm"
MODEL = "gpt-oss:20b"
# Sistema para OTIMIZAÇÃO DE PROMPTS
SYSTEM_PROMPT = """You are a PROMPT OPTIMIZER for a British International School.
YOUR TASK:
1. Take ANY input (Portuguese, American English, any language)
2. ALWAYS output an OPTIMIZED PROMPT in British English
3. The output should be a clear, educational prompt suitable for British school levels
OPTIMIZATION RULES:
- Convert to British spelling: colour, centre, analyse, organise, behaviour, favourite
- Add British educational context: Pre-Prep, Prep, Junior, IGCSE, IBDP
- Make the prompt clear and specific
- Include learning objectives when relevant
- Use British pedagogical terminology
EXAMPLES:
Input: "como ensinar matemática?"
Output: "Design a mathematics lesson plan for Year 5 pupils covering fractions and decimals, incorporating visual aids and hands-on activities aligned with the National Curriculum."
Input: "teach photosynthesis"
Output: "Create an engaging IGCSE Biology lesson on photosynthesis, including practical experiments, diagrams, and assessment strategies suitable for Year 10 pupils."
ALWAYS OUTPUT ONLY THE OPTIMIZED PROMPT, NOTHING ELSE."""
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class BritishPromptOptimizer:
def __init__(self):
self.client = Client(
host="https://ollama.com",
headers={'Authorization': OLLAMA_API_KEY}
)
self.model = MODEL
def optimize_prompt(self, user_input):
"""Optimize ANY input to British English educational prompt"""
try:
# Generate optimized prompt
response = self.client.chat(
model=self.model,
messages=[
{'role': 'system', 'content': SYSTEM_PROMPT},
{'role': 'user', 'content': user_input}
],
options={
'temperature': 0.7,
'top_p': 0.9,
'max_tokens': 200
}
)
optimized = response['message']['content'].strip()
# Ensure British spelling
optimized = self.enforce_british_spelling(optimized)
return optimized
except Exception as e:
logger.error(f"Error optimizing prompt: {e}")
return "Create an engaging lesson plan for British pupils incorporating active learning strategies."
def enforce_british_spelling(self, text):
"""Ensure British spelling in output"""
replacements = {
"color": "colour",
"center": "centre",
"analyze": "analyse",
"organize": "organise",
"behavior": "behaviour",
"favor": "favour",
"honor": "honour",
"theater": "theatre",
"meter": "metre",
"fiber": "fibre",
"defense": "defence",
"license": "licence",
"practice" + " (noun)": "practice",
"practise" + " (verb)": "practise"
}
for american, british in replacements.items():
text = text.replace(american, british)
text = text.replace(american.capitalize(), british.capitalize())
return text
def interactive_mode(self):
"""Run interactive optimizer"""
print("\n🎓 BRITISH PROMPT OPTIMIZER")
print("="*60)
print("Enter ANY prompt in ANY language")
print("I will optimize it for British education")
print("Type 'quit' to exit\n")
while True:
user_input = input("\nOriginal prompt: ").strip()
if user_input.lower() in ['quit', 'exit', 'bye']:
print("\nCheerio! Have a brilliant day!")
break
if not user_input:
continue
print("\nOptimized prompt: ", end="", flush=True)
optimized = self.optimize_prompt(user_input)
print(optimized)
def batch_optimize(self):
"""Optimize multiple prompts"""
test_prompts = [
"como fazer uma aula boa?",
"teach math to kids",
"explicar fotossíntese",
"homework ideas",
"avaliação de alunos",
"create a science project",
"português para crianças",
"classroom management tips",
"ideias para educação física",
"how to teach Shakespeare"
]
print("\n🔄 BATCH OPTIMIZATION")
print("="*60)
results = []
for i, prompt in enumerate(test_prompts, 1):
print(f"\n{i}. Original: {prompt}")
optimized = self.optimize_prompt(prompt)
print(f" Optimized: {optimized}")
results.append({
"original": prompt,
"optimized": optimized,
"timestamp": datetime.now().isoformat()
})
# Save results
output_dir = Path("prompt_optimization_results")
output_dir.mkdir(exist_ok=True)
output_file = output_dir / f"batch_optimization_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"\n📁 Results saved to: {output_file}")
def optimize_from_file(self, input_file, output_file):
"""Optimize prompts from JSONL file"""
print(f"\n📂 Processing file: {input_file}")
optimized_count = 0
with open(input_file, 'r', encoding='utf-8') as f_in:
with open(output_file, 'w', encoding='utf-8') as f_out:
for line in f_in:
try:
data = json.loads(line.strip())
# Extract user message
if 'messages' in data:
for msg in data['messages']:
if msg['role'] == 'user':
original = msg['content']
optimized = self.optimize_prompt(original)
# Save optimized version
output_data = {
"original": original,
"optimized": optimized,
"timestamp": datetime.now().isoformat()
}
f_out.write(json.dumps(output_data, ensure_ascii=False) + '\n')
optimized_count += 1
if optimized_count % 100 == 0:
print(f" Processed: {optimized_count}")
except Exception as e:
logger.error(f"Error processing line: {e}")
continue
print(f"\n✅ Optimized {optimized_count} prompts")
print(f"📁 Saved to: {output_file}")
def main():
optimizer = BritishPromptOptimizer()
print("🎓 BRITISH PROMPT OPTIMIZER - PRODUCTION")
print("="*60)
print("1. Interactive mode (type prompts)")
print("2. Batch test (10 examples)")
print("3. Process file")
print("4. Quick test")
choice = input("\nSelect mode (1-4): ").strip()
if choice == "1":
optimizer.interactive_mode()
elif choice == "2":
optimizer.batch_optimize()
elif choice == "3":
input_file = input("Input file path: ").strip()
output_file = input("Output file path: ").strip()
if Path(input_file).exists():
optimizer.optimize_from_file(input_file, output_file)
else:
print("File not found!")
elif choice == "4":
# Quick test
test_prompts = [
"como fazer uma aula boa?",
"teach photosynthesis",
"avaliação para matemática"
]
print("\n🧪 QUICK TEST")
for prompt in test_prompts:
print(f"\nOriginal: {prompt}")
print(f"Optimized: {optimizer.optimize_prompt(prompt)}")
else:
print("Invalid choice")
if __name__ == "__main__":
main() |