my-kai-model
/
myvenv
/lib
/python3.12
/site-packages
/huggingface_hub
/inference
/_providers
/sambanova.py
from typing import Any, Dict, Optional, Union | |
from huggingface_hub.hf_api import InferenceProviderMapping | |
from huggingface_hub.inference._common import RequestParameters, _as_dict | |
from huggingface_hub.inference._providers._common import BaseConversationalTask, TaskProviderHelper, filter_none | |
class SambanovaConversationalTask(BaseConversationalTask): | |
def __init__(self): | |
super().__init__(provider="sambanova", base_url="https://api.sambanova.ai") | |
def _prepare_payload_as_dict( | |
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping | |
) -> Optional[Dict]: | |
response_format_config = parameters.get("response_format") | |
if isinstance(response_format_config, dict): | |
if response_format_config.get("type") == "json_schema": | |
json_schema_config = response_format_config.get("json_schema", {}) | |
strict = json_schema_config.get("strict") | |
if isinstance(json_schema_config, dict) and (strict is True or strict is None): | |
json_schema_config["strict"] = False | |
payload = super()._prepare_payload_as_dict(inputs, parameters, provider_mapping_info) | |
return payload | |
class SambanovaFeatureExtractionTask(TaskProviderHelper): | |
def __init__(self): | |
super().__init__(provider="sambanova", base_url="https://api.sambanova.ai", task="feature-extraction") | |
def _prepare_route(self, mapped_model: str, api_key: str) -> str: | |
return "/v1/embeddings" | |
def _prepare_payload_as_dict( | |
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping | |
) -> Optional[Dict]: | |
parameters = filter_none(parameters) | |
return {"input": inputs, "model": provider_mapping_info.provider_id, **parameters} | |
def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any: | |
embeddings = _as_dict(response)["data"] | |
return [embedding["embedding"] for embedding in embeddings] | |