import argparse, torch from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer from PIL import Image def main(): parser = argparse.ArgumentParser() parser.add_argument("--image", type=str, required=True) parser.add_argument("--max_length", type=int, default=20) args = parser.parse_args() model_id = "nlpconnect/vit-gpt2-image-captioning" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = VisionEncoderDecoderModel.from_pretrained(model_id).to(device) feature_extractor = ViTImageProcessor.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) img = Image.open(args.image).convert("RGB") pixel_values = feature_extractor(images=[img], return_tensors="pt").pixel_values.to(device) with torch.no_grad(): output_ids = model.generate(pixel_values, max_length=args.max_length)[0] caption = tokenizer.decode(output_ids, skip_special_tokens=True) print(caption) if __name__ == "__main__": main()