Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,647 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: text-generation
|
| 3 |
+
inference: true
|
| 4 |
+
widget:
|
| 5 |
+
- text: 'def print_hello_world():'
|
| 6 |
+
example_title: Hello world
|
| 7 |
+
group: Python
|
| 8 |
+
license: bigscience-openrail-m
|
| 9 |
+
pretrain-datasets:
|
| 10 |
+
- books
|
| 11 |
+
- arxiv
|
| 12 |
+
- c4
|
| 13 |
+
- falcon-refinedweb
|
| 14 |
+
- wiki
|
| 15 |
+
- github-issues
|
| 16 |
+
- stack_markdown
|
| 17 |
+
- self-made dataset of permissive github code
|
| 18 |
+
datasets:
|
| 19 |
+
- bigcode/the-stack-dedup
|
| 20 |
+
- rombodawg/2XUNCENSORED_MegaCodeTraining188k
|
| 21 |
+
- bigcode/commitpackft
|
| 22 |
+
metrics:
|
| 23 |
+
- code_eval
|
| 24 |
+
library_name: transformers
|
| 25 |
+
tags:
|
| 26 |
+
- code
|
| 27 |
+
model-index:
|
| 28 |
+
- name: Refact-1.6B
|
| 29 |
+
results:
|
| 30 |
+
- task:
|
| 31 |
+
type: text-generation
|
| 32 |
+
dataset:
|
| 33 |
+
type: openai_humaneval
|
| 34 |
+
name: HumanEval
|
| 35 |
+
metrics:
|
| 36 |
+
- name: pass@1 (T=0.01)
|
| 37 |
+
type: pass@1
|
| 38 |
+
value: 32.0
|
| 39 |
+
verified: false
|
| 40 |
+
- name: pass@1 (T=0.2)
|
| 41 |
+
type: pass@1
|
| 42 |
+
value: 31.5
|
| 43 |
+
verified: false
|
| 44 |
+
- name: pass@10 (T=0.8)
|
| 45 |
+
type: pass@10
|
| 46 |
+
value: 53.0
|
| 47 |
+
verified: false
|
| 48 |
+
- name: pass@100 (T=0.8)
|
| 49 |
+
type: pass@100
|
| 50 |
+
value: 76.9
|
| 51 |
+
verified: false
|
| 52 |
+
- task:
|
| 53 |
+
type: text-generation
|
| 54 |
+
dataset:
|
| 55 |
+
type: bigcode/humanevalpack
|
| 56 |
+
name: HumanEvalSynthesize Python
|
| 57 |
+
metrics:
|
| 58 |
+
- name: pass@1 (T=0.2)
|
| 59 |
+
type: pass@1
|
| 60 |
+
value: 35.8
|
| 61 |
+
verified: false
|
| 62 |
+
- task:
|
| 63 |
+
type: text-generation
|
| 64 |
+
dataset:
|
| 65 |
+
type: bigcode/humanevalpack
|
| 66 |
+
name: HumanEvalSynthesize JavaScript
|
| 67 |
+
metrics:
|
| 68 |
+
- name: pass@1 (T=0.2)
|
| 69 |
+
type: pass@1
|
| 70 |
+
value: 31.6
|
| 71 |
+
verified: false
|
| 72 |
+
- task:
|
| 73 |
+
type: text-generation
|
| 74 |
+
dataset:
|
| 75 |
+
type: bigcode/humanevalpack
|
| 76 |
+
name: HumanEvalSynthesize Java
|
| 77 |
+
metrics:
|
| 78 |
+
- name: pass@1 (T=0.2)
|
| 79 |
+
type: pass@1
|
| 80 |
+
value: 29.1
|
| 81 |
+
verified: false
|
| 82 |
+
- task:
|
| 83 |
+
type: text-generation
|
| 84 |
+
dataset:
|
| 85 |
+
type: bigcode/humanevalpack
|
| 86 |
+
name: HumanEvalSynthesize Go
|
| 87 |
+
metrics:
|
| 88 |
+
- name: pass@1 (T=0.2)
|
| 89 |
+
type: pass@1
|
| 90 |
+
value: -1
|
| 91 |
+
verified: false
|
| 92 |
+
- task:
|
| 93 |
+
type: text-generation
|
| 94 |
+
dataset:
|
| 95 |
+
type: bigcode/humanevalpack
|
| 96 |
+
name: HumanEvalSynthesize C++
|
| 97 |
+
metrics:
|
| 98 |
+
- name: pass@1 (T=0.2)
|
| 99 |
+
type: pass@1
|
| 100 |
+
value: 26.3
|
| 101 |
+
verified: false
|
| 102 |
+
- task:
|
| 103 |
+
type: text-generation
|
| 104 |
+
dataset:
|
| 105 |
+
type: bigcode/humanevalpack
|
| 106 |
+
name: HumanEvalSynthesize Rust
|
| 107 |
+
metrics:
|
| 108 |
+
- name: pass@1 (T=0.2)
|
| 109 |
+
type: pass@1
|
| 110 |
+
value: -1
|
| 111 |
+
verified: false
|
| 112 |
+
- task:
|
| 113 |
+
type: text-generation
|
| 114 |
+
dataset:
|
| 115 |
+
type: bigcode/humanevalpack
|
| 116 |
+
name: HumanEvalSynthesize Average
|
| 117 |
+
metrics:
|
| 118 |
+
- name: pass@1 (T=0.2)
|
| 119 |
+
type: pass@1
|
| 120 |
+
value: -1
|
| 121 |
+
verified: false
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
- task:
|
| 128 |
+
type: text-generation
|
| 129 |
+
dataset:
|
| 130 |
+
type: bigcode/humanevalpack
|
| 131 |
+
name: HumanEvalFix Python
|
| 132 |
+
metrics:
|
| 133 |
+
- name: pass@1 (T=0.2)
|
| 134 |
+
type: pass@1
|
| 135 |
+
value: 23.6
|
| 136 |
+
verified: false
|
| 137 |
+
- task:
|
| 138 |
+
type: text-generation
|
| 139 |
+
dataset:
|
| 140 |
+
type: bigcode/humanevalpack
|
| 141 |
+
name: HumanEvalFix JavaScript
|
| 142 |
+
metrics:
|
| 143 |
+
- name: pass@1 (T=0.2)
|
| 144 |
+
type: pass@1
|
| 145 |
+
value: -1
|
| 146 |
+
verified: false
|
| 147 |
+
- task:
|
| 148 |
+
type: text-generation
|
| 149 |
+
dataset:
|
| 150 |
+
type: bigcode/humanevalpack
|
| 151 |
+
name: HumanEvalFix Java
|
| 152 |
+
metrics:
|
| 153 |
+
- name: pass@1 (T=0.2)
|
| 154 |
+
type: pass@1
|
| 155 |
+
value: -1
|
| 156 |
+
verified: false
|
| 157 |
+
- task:
|
| 158 |
+
type: text-generation
|
| 159 |
+
dataset:
|
| 160 |
+
type: bigcode/humanevalpack
|
| 161 |
+
name: HumanEvalFix Go
|
| 162 |
+
metrics:
|
| 163 |
+
- name: pass@1 (T=0.2)
|
| 164 |
+
type: pass@1
|
| 165 |
+
value: -1
|
| 166 |
+
verified: false
|
| 167 |
+
- task:
|
| 168 |
+
type: text-generation
|
| 169 |
+
dataset:
|
| 170 |
+
type: bigcode/humanevalpack
|
| 171 |
+
name: HumanEvalFix C++
|
| 172 |
+
metrics:
|
| 173 |
+
- name: pass@1 (T=0.2)
|
| 174 |
+
type: pass@1
|
| 175 |
+
value: -1
|
| 176 |
+
verified: false
|
| 177 |
+
- task:
|
| 178 |
+
type: text-generation
|
| 179 |
+
dataset:
|
| 180 |
+
type: bigcode/humanevalpack
|
| 181 |
+
name: HumanEvalFix Rust
|
| 182 |
+
metrics:
|
| 183 |
+
- name: pass@1 (T=0.2)
|
| 184 |
+
type: pass@1
|
| 185 |
+
value: -1
|
| 186 |
+
verified: false
|
| 187 |
+
- task:
|
| 188 |
+
type: text-generation
|
| 189 |
+
dataset:
|
| 190 |
+
type: bigcode/humanevalpack
|
| 191 |
+
name: HumanEvalFix Average
|
| 192 |
+
metrics:
|
| 193 |
+
- name: pass@1 (T=0.2)
|
| 194 |
+
type: pass@1
|
| 195 |
+
value: -1
|
| 196 |
+
verified: false
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
- task:
|
| 204 |
+
type: text-generation
|
| 205 |
+
dataset:
|
| 206 |
+
type: bigcode/humanevalpack
|
| 207 |
+
name: HumanEvalExplain Python
|
| 208 |
+
metrics:
|
| 209 |
+
- name: pass@1 (T=0.2)
|
| 210 |
+
type: pass@1
|
| 211 |
+
value: -1
|
| 212 |
+
verified: false
|
| 213 |
+
- task:
|
| 214 |
+
type: text-generation
|
| 215 |
+
dataset:
|
| 216 |
+
type: bigcode/humanevalpack
|
| 217 |
+
name: HumanEvalExplain JavaScript
|
| 218 |
+
metrics:
|
| 219 |
+
- name: pass@1 (T=0.2)
|
| 220 |
+
type: pass@1
|
| 221 |
+
value: -1
|
| 222 |
+
verified: false
|
| 223 |
+
- task:
|
| 224 |
+
type: text-generation
|
| 225 |
+
dataset:
|
| 226 |
+
type: bigcode/humanevalpack
|
| 227 |
+
name: HumanEvalExplain Java
|
| 228 |
+
metrics:
|
| 229 |
+
- name: pass@1 (T=0.2)
|
| 230 |
+
type: pass@1
|
| 231 |
+
value: -1
|
| 232 |
+
verified: false
|
| 233 |
+
- task:
|
| 234 |
+
type: text-generation
|
| 235 |
+
dataset:
|
| 236 |
+
type: bigcode/humanevalpack
|
| 237 |
+
name: HumanEvalExplain Go
|
| 238 |
+
metrics:
|
| 239 |
+
- name: pass@1 (T=0.2)
|
| 240 |
+
type: pass@1
|
| 241 |
+
value: -1
|
| 242 |
+
verified: false
|
| 243 |
+
- task:
|
| 244 |
+
type: text-generation
|
| 245 |
+
dataset:
|
| 246 |
+
type: bigcode/humanevalpack
|
| 247 |
+
name: HumanEvalExplain C++
|
| 248 |
+
metrics:
|
| 249 |
+
- name: pass@1 (T=0.2)
|
| 250 |
+
type: pass@1
|
| 251 |
+
value: -1
|
| 252 |
+
verified: false
|
| 253 |
+
- task:
|
| 254 |
+
type: text-generation
|
| 255 |
+
dataset:
|
| 256 |
+
type: bigcode/humanevalpack
|
| 257 |
+
name: HumanEvalExplain Rust
|
| 258 |
+
metrics:
|
| 259 |
+
- name: pass@1 (T=0.2)
|
| 260 |
+
type: pass@1
|
| 261 |
+
value: -1
|
| 262 |
+
verified: false
|
| 263 |
+
- task:
|
| 264 |
+
type: text-generation
|
| 265 |
+
dataset:
|
| 266 |
+
type: bigcode/humanevalpack
|
| 267 |
+
name: HumanEvalExplain Average
|
| 268 |
+
metrics:
|
| 269 |
+
- name: pass@1 (T=0.2)
|
| 270 |
+
type: pass@1
|
| 271 |
+
value: -1
|
| 272 |
+
verified: false
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
- task:
|
| 276 |
+
type: text-generation
|
| 277 |
+
dataset:
|
| 278 |
+
type: mbpp
|
| 279 |
+
name: MBPP
|
| 280 |
+
metrics:
|
| 281 |
+
- name: pass@1 (T=0.01)
|
| 282 |
+
type: pass@1
|
| 283 |
+
value: 31.15
|
| 284 |
+
verified: false
|
| 285 |
+
- task:
|
| 286 |
+
type: text-generation
|
| 287 |
+
dataset:
|
| 288 |
+
type: ds1000
|
| 289 |
+
name: DS-1000 (Overall Completion)
|
| 290 |
+
metrics:
|
| 291 |
+
- name: pass@1 (T=0.2)
|
| 292 |
+
type: pass@1
|
| 293 |
+
value: -1
|
| 294 |
+
verified: false
|
| 295 |
+
- task:
|
| 296 |
+
type: text-generation
|
| 297 |
+
dataset:
|
| 298 |
+
type: nuprl/MultiPL-E
|
| 299 |
+
name: MultiPL-HumanEval (C++)
|
| 300 |
+
metrics:
|
| 301 |
+
- name: pass@1 (T=0.2)
|
| 302 |
+
type: pass@1
|
| 303 |
+
value: 21.61
|
| 304 |
+
verified: false
|
| 305 |
+
- task:
|
| 306 |
+
type: text-generation
|
| 307 |
+
dataset:
|
| 308 |
+
type: nuprl/MultiPL-E
|
| 309 |
+
name: MultiPL-HumanEval (C#)
|
| 310 |
+
metrics:
|
| 311 |
+
- name: pass@1 (T=0.2)
|
| 312 |
+
type: pass@1
|
| 313 |
+
value: 13.91
|
| 314 |
+
verified: false
|
| 315 |
+
- task:
|
| 316 |
+
type: text-generation
|
| 317 |
+
dataset:
|
| 318 |
+
type: nuprl/MultiPL-E
|
| 319 |
+
name: MultiPL-HumanEval (D)
|
| 320 |
+
metrics:
|
| 321 |
+
- name: pass@1 (T=0.2)
|
| 322 |
+
type: pass@1
|
| 323 |
+
value: 9.5
|
| 324 |
+
verified: false
|
| 325 |
+
- task:
|
| 326 |
+
type: text-generation
|
| 327 |
+
dataset:
|
| 328 |
+
type: nuprl/MultiPL-E
|
| 329 |
+
name: MultiPL-HumanEval (Go)
|
| 330 |
+
metrics:
|
| 331 |
+
- name: pass@1 (T=0.2)
|
| 332 |
+
type: pass@1
|
| 333 |
+
value: 53.57
|
| 334 |
+
verified: false
|
| 335 |
+
- task:
|
| 336 |
+
type: text-generation
|
| 337 |
+
dataset:
|
| 338 |
+
type: nuprl/MultiPL-E
|
| 339 |
+
name: MultiPL-HumanEval (Java)
|
| 340 |
+
metrics:
|
| 341 |
+
- name: pass@1 (T=0.2)
|
| 342 |
+
type: pass@1
|
| 343 |
+
value: 21.58
|
| 344 |
+
verified: false
|
| 345 |
+
- task:
|
| 346 |
+
type: text-generation
|
| 347 |
+
dataset:
|
| 348 |
+
type: nuprl/MultiPL-E
|
| 349 |
+
name: MultiPL-HumanEval (Julia)
|
| 350 |
+
metrics:
|
| 351 |
+
- name: pass@1 (T=0.2)
|
| 352 |
+
type: pass@1
|
| 353 |
+
value: 13.75
|
| 354 |
+
verified: false
|
| 355 |
+
- task:
|
| 356 |
+
type: text-generation
|
| 357 |
+
dataset:
|
| 358 |
+
type: nuprl/MultiPL-E
|
| 359 |
+
name: MultiPL-HumanEval (JavaScript)
|
| 360 |
+
metrics:
|
| 361 |
+
- name: pass@1 (T=0.2)
|
| 362 |
+
type: pass@1
|
| 363 |
+
value: 26.88
|
| 364 |
+
verified: false
|
| 365 |
+
- task:
|
| 366 |
+
type: text-generation
|
| 367 |
+
dataset:
|
| 368 |
+
type: nuprl/MultiPL-E
|
| 369 |
+
name: MultiPL-HumanEval (Lua)
|
| 370 |
+
metrics:
|
| 371 |
+
- name: pass@1 (T=0.2)
|
| 372 |
+
type: pass@1
|
| 373 |
+
value: 15.26
|
| 374 |
+
verified: false
|
| 375 |
+
- task:
|
| 376 |
+
type: text-generation
|
| 377 |
+
dataset:
|
| 378 |
+
type: nuprl/MultiPL-E
|
| 379 |
+
name: MultiPL-HumanEval (PHP)
|
| 380 |
+
metrics:
|
| 381 |
+
- name: pass@1 (T=0.2)
|
| 382 |
+
type: pass@1
|
| 383 |
+
value: 23.04
|
| 384 |
+
verified: false
|
| 385 |
+
- task:
|
| 386 |
+
type: text-generation
|
| 387 |
+
dataset:
|
| 388 |
+
type: nuprl/MultiPL-E
|
| 389 |
+
name: MultiPL-HumanEval (Perl)
|
| 390 |
+
metrics:
|
| 391 |
+
- name: pass@1 (T=0.2)
|
| 392 |
+
type: pass@1
|
| 393 |
+
value: 12.1
|
| 394 |
+
verified: false
|
| 395 |
+
- task:
|
| 396 |
+
type: text-generation
|
| 397 |
+
dataset:
|
| 398 |
+
type: nuprl/MultiPL-E
|
| 399 |
+
name: MultiPL-HumanEval (Python)
|
| 400 |
+
metrics:
|
| 401 |
+
- name: pass@1 (T=0.2)
|
| 402 |
+
type: pass@1
|
| 403 |
+
value: 29.6
|
| 404 |
+
verified: false
|
| 405 |
+
- task:
|
| 406 |
+
type: text-generation
|
| 407 |
+
dataset:
|
| 408 |
+
type: nuprl/MultiPL-E
|
| 409 |
+
name: MultiPL-HumanEval (R)
|
| 410 |
+
metrics:
|
| 411 |
+
- name: pass@1 (T=0.2)
|
| 412 |
+
type: pass@1
|
| 413 |
+
value: 13.77
|
| 414 |
+
verified: false
|
| 415 |
+
- task:
|
| 416 |
+
type: text-generation
|
| 417 |
+
dataset:
|
| 418 |
+
type: nuprl/MultiPL-E
|
| 419 |
+
name: MultiPL-HumanEval (Ruby)
|
| 420 |
+
metrics:
|
| 421 |
+
- name: pass@1 (T=0.2)
|
| 422 |
+
type: pass@1
|
| 423 |
+
value: 12.68
|
| 424 |
+
verified: false
|
| 425 |
+
- task:
|
| 426 |
+
type: text-generation
|
| 427 |
+
dataset:
|
| 428 |
+
type: nuprl/MultiPL-E
|
| 429 |
+
name: MultiPL-HumanEval (Racket)
|
| 430 |
+
metrics:
|
| 431 |
+
- name: pass@1 (T=0.2)
|
| 432 |
+
type: pass@1
|
| 433 |
+
value: 4.29
|
| 434 |
+
verified: false
|
| 435 |
+
- task:
|
| 436 |
+
type: text-generation
|
| 437 |
+
dataset:
|
| 438 |
+
type: nuprl/MultiPL-E
|
| 439 |
+
name: MultiPL-HumanEval (Rust)
|
| 440 |
+
metrics:
|
| 441 |
+
- name: pass@1 (T=0.2)
|
| 442 |
+
type: pass@1
|
| 443 |
+
value: 19.54
|
| 444 |
+
verified: false
|
| 445 |
+
- task:
|
| 446 |
+
type: text-generation
|
| 447 |
+
dataset:
|
| 448 |
+
type: nuprl/MultiPL-E
|
| 449 |
+
name: MultiPL-HumanEval (Scala)
|
| 450 |
+
metrics:
|
| 451 |
+
- name: pass@1 (T=0.2)
|
| 452 |
+
type: pass@1
|
| 453 |
+
value: -1
|
| 454 |
+
verified: false
|
| 455 |
+
- task:
|
| 456 |
+
type: text-generation
|
| 457 |
+
dataset:
|
| 458 |
+
type: nuprl/MultiPL-E
|
| 459 |
+
name: MultiPL-HumanEval (Bash)
|
| 460 |
+
metrics:
|
| 461 |
+
- name: pass@1 (T=0.2)
|
| 462 |
+
type: pass@1
|
| 463 |
+
value: 5.7
|
| 464 |
+
verified: false
|
| 465 |
+
- task:
|
| 466 |
+
type: text-generation
|
| 467 |
+
dataset:
|
| 468 |
+
type: nuprl/MultiPL-E
|
| 469 |
+
name: MultiPL-HumanEval (Swift)
|
| 470 |
+
metrics:
|
| 471 |
+
- name: pass@1 (T=0.2)
|
| 472 |
+
type: pass@1
|
| 473 |
+
value: 0.1768
|
| 474 |
+
verified: false
|
| 475 |
+
- task:
|
| 476 |
+
type: text-generation
|
| 477 |
+
dataset:
|
| 478 |
+
type: nuprl/MultiPL-E
|
| 479 |
+
name: MultiPL-HumanEval (TypeScript)
|
| 480 |
+
metrics:
|
| 481 |
+
- name: pass@1 (T=0.2)
|
| 482 |
+
type: pass@1
|
| 483 |
+
value: -1
|
| 484 |
+
verified: false
|
| 485 |
+
|
| 486 |
+
language:
|
| 487 |
+
- en
|
| 488 |
+
---
|
| 489 |
+
|
| 490 |
+

|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
# Refact-1.6B
|
| 494 |
+
|
| 495 |
+
Finally, the model we started training with our blog post
|
| 496 |
+
[Applying Recent Innovations](https://refact.ai/blog/2023/applying-recent-innovations-to-train-model/) is ready 🎉
|
| 497 |
+
|
| 498 |
+
After fine-tuning on generated data, it beats Replit 3b, Stability Code 3b and many other models. It almost beats
|
| 499 |
+
StarCoder ten times the size!
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
Model | Size | HumanEval pass@1 | HumanEval pass@10 |
|
| 503 |
+
----------------------|---------------|--------------------|--------------------|
|
| 504 |
+
DeciCoder-1b | 1b | 19.1% | |
|
| 505 |
+
<b>Refact-1.6-fim</b> | <b>1.6b</b> | <b>32.0%</b> | <b>53.0%</b> |
|
| 506 |
+
StableCode | 3b | 20.2% | 33.8% |
|
| 507 |
+
ReplitCode v1 | 3b | 21.9% | |
|
| 508 |
+
CodeLlama | 7b | 33.5% | 59.6% |
|
| 509 |
+
StarCoder | 15b | 33.6% | |
|
| 510 |
+
|
| 511 |
+
Likely, it's the best model for practical use in your IDE for code completion because it's smart and fast!
|
| 512 |
+
You can start using it right now by downloading the
|
| 513 |
+
[Refact plugin](https://refact.ai/). You can host the model yourself, too, using the
|
| 514 |
+
[open source docker container](https://github.com/smallcloudai/refact).
|
| 515 |
+
|
| 516 |
+
And it's multi-language (see MultiPL-HumanEval and other metrics below) and it works as a chat (see the section below).
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
# Architecture
|
| 520 |
+
|
| 521 |
+
As described in more detail in the blog post, we used:
|
| 522 |
+
|
| 523 |
+
- [ALiBi](https://arxiv.org/abs/2108.12409) based attention
|
| 524 |
+
- [LayerNorm](https://arxiv.org/abs/1607.06450v1) instead of [RMSNorm](https://arxiv.org/pdf/1910.07467.pdf)
|
| 525 |
+
- [Multi Query Attention](https://arxiv.org/abs/1911.02150)
|
| 526 |
+
|
| 527 |
+
We also used LiON, flash attention, early dropout. It's not that innovative that you can't run it, in fact you can -- see an example below.
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
# Pretraining
|
| 531 |
+
|
| 532 |
+
For the base model, we used our own dataset that contains code with permissive licenses only, and open text datasets.
|
| 533 |
+
Filtering is the key to success of this model:
|
| 534 |
+
|
| 535 |
+
- We only used text in English
|
| 536 |
+
- Only topics related to computer science
|
| 537 |
+
- Applied heavy deduplication
|
| 538 |
+
|
| 539 |
+
The text to code proportion was 50:50, model trained for 1.2T tokens.
|
| 540 |
+
|
| 541 |
+
We don't release the base model, because its Fill-in-the-Middle (FIM) capability likes to repeat itself too much, so
|
| 542 |
+
its practical use is limited. But if you still want it, write us a message on discord.
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
# Finetuning
|
| 546 |
+
|
| 547 |
+
We tested our hypothesis that chat data should boost base model performance in FIM and
|
| 548 |
+
regular left-to-right code completion. We found that just 15% of open
|
| 549 |
+
[code](https://huggingface.co/datasets/bigcode/commitpackft)
|
| 550 |
+
[instruction-following](https://huggingface.co/datasets/rombodawg/2XUNCENSORED_MegaCodeTraining188k) datasets,
|
| 551 |
+
that we filtered for quality, improves almost all metrics.
|
| 552 |
+
|
| 553 |
+
Additionally, to improve FIM, we observed common failure modes, and prepared a synthetic dataset based on
|
| 554 |
+
[The Stack dedup v1.1](https://huggingface.co/datasets/bigcode/the-stack-dedup) to address them.
|
| 555 |
+
|
| 556 |
+
There is a distribution shift between typical code on the internet, and the code you write in your IDE.
|
| 557 |
+
The former is likely finished, so the model tries to come up with a suggestion that makes the code complete.
|
| 558 |
+
You are likely to have half-written code as you work on it, there is no single addition that can repair it
|
| 559 |
+
fully.
|
| 560 |
+
|
| 561 |
+
In practice, model needs to have a tendency to stop after a couple of lines added, and sometimes don't write
|
| 562 |
+
anything at all. We found that just giving it empty completions, single line completions, multiline
|
| 563 |
+
completions that end with a smaller text indent or at least a newline -- makes it much more usable. This data
|
| 564 |
+
was used as the rest 85% of the finetune dataset.
|
| 565 |
+
|
| 566 |
+
The final model is the result of several attempts to make it work as good as possible for code completion,
|
| 567 |
+
and to perform well on a wide range of metrics. The best attempt took 40B tokens.
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
# Limitations and Bias
|
| 571 |
+
|
| 572 |
+
The Refact-1.6B model was trained on text in English. But it has seen a lot more languages in
|
| 573 |
+
code comments. Its performance on non-English languages is lower, for sure.
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
# It Works As a Chat
|
| 577 |
+
|
| 578 |
+
The primary application of this model is code completion (infill) in multiple programming languages.
|
| 579 |
+
But it works as a chat quite well.
|
| 580 |
+
|
| 581 |
+
HumanEval results using instruction following (chat) format, against models specialized for chat only:
|
| 582 |
+
|
| 583 |
+
Model | Size | pass@1 | pass@10 |
|
| 584 |
+
-----------------------|--------|----------|----------|
|
| 585 |
+
<b>Refact-1.6-fim</b> | 1.6b | 38.4% | 55.6% |
|
| 586 |
+
StableCode-instruct | 3b | 26.9% | 36.2% |
|
| 587 |
+
OctoGeeX | 6b | 44.7% | |
|
| 588 |
+
CodeLlama-instruct | 7b | 34.8% | 64.3% |
|
| 589 |
+
CodeLlama-instruct | 13b | 42.7% | 71.6% |
|
| 590 |
+
StarChat-β | 15b | 33.5% | |
|
| 591 |
+
OctoCoder | 15b | 46.2% | |
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
# Example
|
| 595 |
+
|
| 596 |
+
Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
|
| 597 |
+
|
| 598 |
+
```python
|
| 599 |
+
# pip install -q transformers
|
| 600 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 601 |
+
|
| 602 |
+
checkpoint = "smallcloudai/Refact-1.6B-fim"
|
| 603 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
| 604 |
+
|
| 605 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 606 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device)
|
| 607 |
+
|
| 608 |
+
prompt = '<fim_prefix>def print_hello_world():\n """<fim_suffix>\n print("Hello world!")<fim_middle>'
|
| 609 |
+
|
| 610 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
| 611 |
+
outputs = model.generate(inputs, max_length=100, temperature=0.2)
|
| 612 |
+
print("-"*80)
|
| 613 |
+
print(tokenizer.decode(outputs[0]))
|
| 614 |
+
```
|
| 615 |
+
|
| 616 |
+
# Chat Format
|
| 617 |
+
|
| 618 |
+
The same model works as chat (experimental).
|
| 619 |
+
|
| 620 |
+
```python
|
| 621 |
+
prompt_template = "<empty_output>SYSTEM {system}\n" \
|
| 622 |
+
"<empty_output>USER {query}\n" \
|
| 623 |
+
"<empty_output>ASSISTANT"
|
| 624 |
+
prompt = prompt_template.format(system="You are a programming assistant",
|
| 625 |
+
query="How do I sort a list in Python?")
|
| 626 |
+
```
|
| 627 |
+
|
| 628 |
+
# Model Stats
|
| 629 |
+
|
| 630 |
+
- **Architecture:** LLAMA-like model with multi-query attention
|
| 631 |
+
- **Objectives** Fill-in-the-Middle, Chat
|
| 632 |
+
- **Tokens context:** 4096
|
| 633 |
+
- **Pretraining tokens:** 1.2T
|
| 634 |
+
- **Finetuning tokens:** 40B
|
| 635 |
+
- **Precision:** bfloat16
|
| 636 |
+
- **GPUs** 64 NVidia A5000
|
| 637 |
+
- **Training time** 28 days
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
# License
|
| 641 |
+
|
| 642 |
+
The model is licensed under the BigScience OpenRAIL-M v1 license agreement
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
# Citation
|
| 646 |
+
|
| 647 |
+
If you are using this model, please give a link to this page.
|