--- language: - en license: apache-2.0 tags: - biencoder - sentence-transformers - text-classification - sentence-pair-classification - semantic-similarity - semantic-search - retrieval - reranking - generated_from_trainer - dataset_size:1451941 - loss:MultipleNegativesRankingLoss base_model: Alibaba-NLP/gte-modernbert-base datasets: - redis/langcache-sentencepairs-v1 pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_precision@1 - cosine_recall@1 - cosine_ndcg@10 - cosine_mrr@1 - cosine_map@100 model-index: - name: Redis fine-tuned BiEncoder model for semantic caching on LangCache results: - task: type: information-retrieval name: Information Retrieval dataset: name: train type: train metrics: - type: cosine_accuracy@1 value: 0.5579129681749296 name: Cosine Accuracy@1 - type: cosine_precision@1 value: 0.5579129681749296 name: Cosine Precision@1 - type: cosine_recall@1 value: 0.5359784831006956 name: Cosine Recall@1 - type: cosine_ndcg@10 value: 0.7522148521266401 name: Cosine Ndcg@10 - type: cosine_mrr@1 value: 0.5579129681749296 name: Cosine Mrr@1 - type: cosine_map@100 value: 0.6974638651409195 name: Cosine Map@100 --- # Redis fine-tuned BiEncoder model for semantic caching on LangCache This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) - **Maximum Sequence Length:** 100 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'}) (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("redis/langcache-embed-v3") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[0.9922, 0.7891, 0.4629], # [0.7891, 1.0000, 0.5117], # [0.4629, 0.5117, 1.0000]], dtype=torch.bfloat16) ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `train` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:-------------------|:-----------| | cosine_accuracy@1 | 0.5579 | | cosine_precision@1 | 0.5579 | | cosine_recall@1 | 0.536 | | **cosine_ndcg@10** | **0.7522** | | cosine_mrr@1 | 0.5579 | | cosine_map@100 | 0.6975 | ## Training Details ### Training Dataset #### LangCache Sentence Pairs (all) * Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) * Size: 109,885 training samples * Columns: texts * Approximate statistics based on the first 1000 samples: | | texts | |:--------|:--------------------------------------------------------------------------------------| | type | list | | details | | * Samples: | texts | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ['The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The newer punts are still very much in existence today and run in the same fleets as the older boats .', 'how can I get financial freedom as soon as possible?'] | | ['The newer punts are still very much in existence today and run in the same fleets as the older boats .', 'The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The older Punts are still very much in existence today and race in the same fleets as the newer boats .'] | | ['Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .'] | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Evaluation Dataset #### LangCache Sentence Pairs (all) * Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) * Size: 109,885 evaluation samples * Columns: texts * Approximate statistics based on the first 1000 samples: | | texts | |:--------|:--------------------------------------------------------------------------------------| | type | list | | details | | * Samples: | texts | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ['The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The newer punts are still very much in existence today and run in the same fleets as the older boats .', 'how can I get financial freedom as soon as possible?'] | | ['The newer punts are still very much in existence today and run in the same fleets as the older boats .', 'The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The older Punts are still very much in existence today and race in the same fleets as the newer boats .'] | | ['Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .'] | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Logs | Epoch | Step | train_cosine_ndcg@10 | |:-----:|:----:|:--------------------:| | -1 | -1 | 0.7522 | ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 5.1.0 - Transformers: 4.56.0 - PyTorch: 2.8.0+cu128 - Accelerate: 1.10.1 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```