Add new SentenceTransformer model
Browse files- README.md +90 -115
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -12,58 +12,42 @@ tags:
|
|
| 12 |
- retrieval
|
| 13 |
- reranking
|
| 14 |
- generated_from_trainer
|
| 15 |
-
- dataset_size:
|
| 16 |
-
- loss:
|
| 17 |
base_model: Alibaba-NLP/gte-modernbert-base
|
| 18 |
widget:
|
| 19 |
-
- source_sentence:
|
| 20 |
-
get a big enough turnout to elect a president .
|
| 21 |
sentences:
|
| 22 |
-
-
|
| 23 |
-
|
| 24 |
-
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
- source_sentence:
|
| 29 |
-
accomplish tasks that fulfill the intentions of the user.
|
| 30 |
sentences:
|
| 31 |
-
-
|
| 32 |
-
|
| 33 |
-
-
|
| 34 |
-
|
| 35 |
-
- software programs that work without direct human intervention to carry out specific
|
| 36 |
-
tasks for an individual user, business process, or software application -siri
|
| 37 |
-
adapts to your preferences over time
|
| 38 |
-
- source_sentence: any location in storage can be accessed at any moment in approximately
|
| 39 |
-
the same amount of time.
|
| 40 |
sentences:
|
| 41 |
-
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
- source_sentence: United issued a statement saying it will " work professionally
|
| 48 |
-
and cooperatively with all its unions . "
|
| 49 |
sentences:
|
| 50 |
-
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
member states " with a view to taking appropriate action if necessary " on the
|
| 57 |
-
matter .
|
| 58 |
sentences:
|
| 59 |
-
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
- Laos 's second most important export destination - said it was consulting EU member
|
| 63 |
-
states ' ' with a view to taking appropriate action if necessary ' ' on the matter
|
| 64 |
-
.
|
| 65 |
-
- the form data assumes and the possible range of values that the attribute defined
|
| 66 |
-
as that type of data may express 1. text 2. numerical
|
| 67 |
datasets:
|
| 68 |
- redis/langcache-sentencepairs-v1
|
| 69 |
pipeline_tag: sentence-similarity
|
|
@@ -88,28 +72,28 @@ model-index:
|
|
| 88 |
type: val
|
| 89 |
metrics:
|
| 90 |
- type: cosine_accuracy
|
| 91 |
-
value: 0.
|
| 92 |
name: Cosine Accuracy
|
| 93 |
- type: cosine_accuracy_threshold
|
| 94 |
-
value: 0.
|
| 95 |
name: Cosine Accuracy Threshold
|
| 96 |
- type: cosine_f1
|
| 97 |
-
value: 0.
|
| 98 |
name: Cosine F1
|
| 99 |
- type: cosine_f1_threshold
|
| 100 |
-
value: 0.
|
| 101 |
name: Cosine F1 Threshold
|
| 102 |
- type: cosine_precision
|
| 103 |
-
value: 0
|
| 104 |
name: Cosine Precision
|
| 105 |
- type: cosine_recall
|
| 106 |
-
value: 0.
|
| 107 |
name: Cosine Recall
|
| 108 |
- type: cosine_ap
|
| 109 |
-
value: 0.
|
| 110 |
name: Cosine Ap
|
| 111 |
- type: cosine_mcc
|
| 112 |
-
value: 0.
|
| 113 |
name: Cosine Mcc
|
| 114 |
- task:
|
| 115 |
type: binary-classification
|
|
@@ -119,28 +103,28 @@ model-index:
|
|
| 119 |
type: test
|
| 120 |
metrics:
|
| 121 |
- type: cosine_accuracy
|
| 122 |
-
value: 0.
|
| 123 |
name: Cosine Accuracy
|
| 124 |
- type: cosine_accuracy_threshold
|
| 125 |
-
value: 0.
|
| 126 |
name: Cosine Accuracy Threshold
|
| 127 |
- type: cosine_f1
|
| 128 |
-
value: 0.
|
| 129 |
name: Cosine F1
|
| 130 |
- type: cosine_f1_threshold
|
| 131 |
-
value: 0.
|
| 132 |
name: Cosine F1 Threshold
|
| 133 |
- type: cosine_precision
|
| 134 |
-
value: 0
|
| 135 |
name: Cosine Precision
|
| 136 |
- type: cosine_recall
|
| 137 |
-
value: 0.
|
| 138 |
name: Cosine Recall
|
| 139 |
- type: cosine_ap
|
| 140 |
-
value: 0
|
| 141 |
name: Cosine Ap
|
| 142 |
- type: cosine_mcc
|
| 143 |
-
value: 0.
|
| 144 |
name: Cosine Mcc
|
| 145 |
---
|
| 146 |
|
|
@@ -194,9 +178,9 @@ from sentence_transformers import SentenceTransformer
|
|
| 194 |
model = SentenceTransformer("redis/langcache-embed-v3")
|
| 195 |
# Run inference
|
| 196 |
sentences = [
|
| 197 |
-
'A
|
| 198 |
-
|
| 199 |
-
'
|
| 200 |
]
|
| 201 |
embeddings = model.encode(sentences)
|
| 202 |
print(embeddings.shape)
|
|
@@ -205,9 +189,9 @@ print(embeddings.shape)
|
|
| 205 |
# Get the similarity scores for the embeddings
|
| 206 |
similarities = model.similarity(embeddings, embeddings)
|
| 207 |
print(similarities)
|
| 208 |
-
# tensor([[1.
|
| 209 |
-
# [0.
|
| 210 |
-
# [0.
|
| 211 |
```
|
| 212 |
|
| 213 |
<!--
|
|
@@ -243,16 +227,16 @@ You can finetune this model on your own dataset.
|
|
| 243 |
* Datasets: `val` and `test`
|
| 244 |
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
| 245 |
|
| 246 |
-
| Metric | val
|
| 247 |
-
|
| 248 |
-
| cosine_accuracy | 0.
|
| 249 |
-
| cosine_accuracy_threshold | 0.
|
| 250 |
-
| cosine_f1 | 0.
|
| 251 |
-
| cosine_f1_threshold | 0.
|
| 252 |
-
| cosine_precision | 0
|
| 253 |
-
| cosine_recall | 0.
|
| 254 |
-
| **cosine_ap** | **0
|
| 255 |
-
| cosine_mcc | 0.
|
| 256 |
|
| 257 |
<!--
|
| 258 |
## Bias, Risks and Limitations
|
|
@@ -273,24 +257,25 @@ You can finetune this model on your own dataset.
|
|
| 273 |
#### LangCache Sentence Pairs (all)
|
| 274 |
|
| 275 |
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
|
| 276 |
-
* Size:
|
| 277 |
-
* Columns: <code>sentence1</code
|
| 278 |
* Approximate statistics based on the first 1000 samples:
|
| 279 |
-
| | sentence1 | sentence2
|
| 280 |
-
|
| 281 |
-
| type | string | string
|
| 282 |
-
| details | <ul><li>min:
|
| 283 |
* Samples:
|
| 284 |
-
| sentence1
|
| 285 |
-
|
| 286 |
-
| <code>
|
| 287 |
-
| <code>
|
| 288 |
-
| <code>
|
| 289 |
-
* Loss: [<code>
|
| 290 |
```json
|
| 291 |
{
|
| 292 |
"scale": 20.0,
|
| 293 |
-
"similarity_fct": "
|
|
|
|
| 294 |
}
|
| 295 |
```
|
| 296 |
|
|
@@ -299,31 +284,32 @@ You can finetune this model on your own dataset.
|
|
| 299 |
#### LangCache Sentence Pairs (all)
|
| 300 |
|
| 301 |
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
|
| 302 |
-
* Size:
|
| 303 |
-
* Columns: <code>sentence1</code
|
| 304 |
* Approximate statistics based on the first 1000 samples:
|
| 305 |
-
| | sentence1 | sentence2
|
| 306 |
-
|
| 307 |
-
| type | string | string
|
| 308 |
-
| details | <ul><li>min:
|
| 309 |
* Samples:
|
| 310 |
-
| sentence1
|
| 311 |
-
|
| 312 |
-
| <code>
|
| 313 |
-
| <code>
|
| 314 |
-
| <code>
|
| 315 |
-
* Loss: [<code>
|
| 316 |
```json
|
| 317 |
{
|
| 318 |
"scale": 20.0,
|
| 319 |
-
"similarity_fct": "
|
|
|
|
| 320 |
}
|
| 321 |
```
|
| 322 |
|
| 323 |
### Training Logs
|
| 324 |
| Epoch | Step | val_cosine_ap | test_cosine_ap |
|
| 325 |
|:-----:|:----:|:-------------:|:--------------:|
|
| 326 |
-
| -1 | -1 |
|
| 327 |
|
| 328 |
|
| 329 |
### Framework Versions
|
|
@@ -352,17 +338,6 @@ You can finetune this model on your own dataset.
|
|
| 352 |
}
|
| 353 |
```
|
| 354 |
|
| 355 |
-
#### CoSENTLoss
|
| 356 |
-
```bibtex
|
| 357 |
-
@online{kexuefm-8847,
|
| 358 |
-
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
| 359 |
-
author={Su Jianlin},
|
| 360 |
-
year={2022},
|
| 361 |
-
month={Jan},
|
| 362 |
-
url={https://kexue.fm/archives/8847},
|
| 363 |
-
}
|
| 364 |
-
```
|
| 365 |
-
|
| 366 |
<!--
|
| 367 |
## Glossary
|
| 368 |
|
|
|
|
| 12 |
- retrieval
|
| 13 |
- reranking
|
| 14 |
- generated_from_trainer
|
| 15 |
+
- dataset_size:478600
|
| 16 |
+
- loss:MultipleNegativesSymmetricRankingLoss
|
| 17 |
base_model: Alibaba-NLP/gte-modernbert-base
|
| 18 |
widget:
|
| 19 |
+
- source_sentence: The brown dog is sniffing the back of a small black dog
|
|
|
|
| 20 |
sentences:
|
| 21 |
+
- Pickens died in Edgefield and was buried on the Willow Brook Cemetery in Edgefield
|
| 22 |
+
, South Carolina .
|
| 23 |
+
- It is notable as the oldest Chinatown in Australia , the oldest continuous Chinese
|
| 24 |
+
settlement in Australia , and the longest continuously running Chinatown outside
|
| 25 |
+
of Asia .
|
| 26 |
+
- There is no large brown dog and small grey dog standing on a rocky surface
|
| 27 |
+
- source_sentence: Is it harmful from security perspectives to use public Wi-Fi?
|
|
|
|
| 28 |
sentences:
|
| 29 |
+
- What is the best way to drive traffic to a website?
|
| 30 |
+
- What startups have used GitHub?
|
| 31 |
+
- Is there something wrong with using public Wi-Fi?
|
| 32 |
+
- source_sentence: How can we make education better?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
sentences:
|
| 34 |
+
- What are some things that would make education better today?
|
| 35 |
+
- Mistery works full-time as a graffiti artist and is also Emcee / Rapper in the
|
| 36 |
+
Brethren group .
|
| 37 |
+
- Jammu Airport operates flights to many cities in India such as Delhi , Leh and
|
| 38 |
+
Srinagar .
|
| 39 |
+
- source_sentence: So are you.
|
|
|
|
|
|
|
| 40 |
sentences:
|
| 41 |
+
- 'Brown said afterwards that he was surprised they had not scored five , and Astall
|
| 42 |
+
wrote in his newspaper column :'
|
| 43 |
+
- Just like yourself.
|
| 44 |
+
- How do I actually lose weight?
|
| 45 |
+
- source_sentence: A group of boys are playing with a ball in front of a large door
|
| 46 |
+
made of wood
|
|
|
|
|
|
|
| 47 |
sentences:
|
| 48 |
+
- The children are playing in front of a large door
|
| 49 |
+
- What is the blind spot?
|
| 50 |
+
- What are some good techniques for controlling your anger?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
datasets:
|
| 52 |
- redis/langcache-sentencepairs-v1
|
| 53 |
pipeline_tag: sentence-similarity
|
|
|
|
| 72 |
type: val
|
| 73 |
metrics:
|
| 74 |
- type: cosine_accuracy
|
| 75 |
+
value: 0.9996860282574568
|
| 76 |
name: Cosine Accuracy
|
| 77 |
- type: cosine_accuracy_threshold
|
| 78 |
+
value: 0.4801735281944275
|
| 79 |
name: Cosine Accuracy Threshold
|
| 80 |
- type: cosine_f1
|
| 81 |
+
value: 0.9998429894802952
|
| 82 |
name: Cosine F1
|
| 83 |
- type: cosine_f1_threshold
|
| 84 |
+
value: 0.4801735281944275
|
| 85 |
name: Cosine F1 Threshold
|
| 86 |
- type: cosine_precision
|
| 87 |
+
value: 1.0
|
| 88 |
name: Cosine Precision
|
| 89 |
- type: cosine_recall
|
| 90 |
+
value: 0.9996860282574568
|
| 91 |
name: Cosine Recall
|
| 92 |
- type: cosine_ap
|
| 93 |
+
value: 0.9999999999999999
|
| 94 |
name: Cosine Ap
|
| 95 |
- type: cosine_mcc
|
| 96 |
+
value: 0.0
|
| 97 |
name: Cosine Mcc
|
| 98 |
- task:
|
| 99 |
type: binary-classification
|
|
|
|
| 103 |
type: test
|
| 104 |
metrics:
|
| 105 |
- type: cosine_accuracy
|
| 106 |
+
value: 0.9999627560521416
|
| 107 |
name: Cosine Accuracy
|
| 108 |
- type: cosine_accuracy_threshold
|
| 109 |
+
value: 0.42059871554374695
|
| 110 |
name: Cosine Accuracy Threshold
|
| 111 |
- type: cosine_f1
|
| 112 |
+
value: 0.9999813776792864
|
| 113 |
name: Cosine F1
|
| 114 |
- type: cosine_f1_threshold
|
| 115 |
+
value: 0.42059871554374695
|
| 116 |
name: Cosine F1 Threshold
|
| 117 |
- type: cosine_precision
|
| 118 |
+
value: 1.0
|
| 119 |
name: Cosine Precision
|
| 120 |
- type: cosine_recall
|
| 121 |
+
value: 0.9999627560521416
|
| 122 |
name: Cosine Recall
|
| 123 |
- type: cosine_ap
|
| 124 |
+
value: 1.0
|
| 125 |
name: Cosine Ap
|
| 126 |
- type: cosine_mcc
|
| 127 |
+
value: 0.0
|
| 128 |
name: Cosine Mcc
|
| 129 |
---
|
| 130 |
|
|
|
|
| 178 |
model = SentenceTransformer("redis/langcache-embed-v3")
|
| 179 |
# Run inference
|
| 180 |
sentences = [
|
| 181 |
+
'A group of boys are playing with a ball in front of a large door made of wood',
|
| 182 |
+
'The children are playing in front of a large door',
|
| 183 |
+
'What are some good techniques for controlling your anger?',
|
| 184 |
]
|
| 185 |
embeddings = model.encode(sentences)
|
| 186 |
print(embeddings.shape)
|
|
|
|
| 189 |
# Get the similarity scores for the embeddings
|
| 190 |
similarities = model.similarity(embeddings, embeddings)
|
| 191 |
print(similarities)
|
| 192 |
+
# tensor([[1.0000, 0.8672, 0.4121],
|
| 193 |
+
# [0.8672, 1.0000, 0.4219],
|
| 194 |
+
# [0.4121, 0.4219, 1.0000]], dtype=torch.bfloat16)
|
| 195 |
```
|
| 196 |
|
| 197 |
<!--
|
|
|
|
| 227 |
* Datasets: `val` and `test`
|
| 228 |
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
| 229 |
|
| 230 |
+
| Metric | val | test |
|
| 231 |
+
|:--------------------------|:--------|:--------|
|
| 232 |
+
| cosine_accuracy | 0.9997 | 1.0 |
|
| 233 |
+
| cosine_accuracy_threshold | 0.4802 | 0.4206 |
|
| 234 |
+
| cosine_f1 | 0.9998 | 1.0 |
|
| 235 |
+
| cosine_f1_threshold | 0.4802 | 0.4206 |
|
| 236 |
+
| cosine_precision | 1.0 | 1.0 |
|
| 237 |
+
| cosine_recall | 0.9997 | 1.0 |
|
| 238 |
+
| **cosine_ap** | **1.0** | **1.0** |
|
| 239 |
+
| cosine_mcc | 0.0 | 0.0 |
|
| 240 |
|
| 241 |
<!--
|
| 242 |
## Bias, Risks and Limitations
|
|
|
|
| 257 |
#### LangCache Sentence Pairs (all)
|
| 258 |
|
| 259 |
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
|
| 260 |
+
* Size: 26,850 training samples
|
| 261 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
| 262 |
* Approximate statistics based on the first 1000 samples:
|
| 263 |
+
| | sentence1 | sentence2 |
|
| 264 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 265 |
+
| type | string | string |
|
| 266 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 16.76 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.58 tokens</li><li>max: 44 tokens</li></ul> |
|
| 267 |
* Samples:
|
| 268 |
+
| sentence1 | sentence2 |
|
| 269 |
+
|:---------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
|
| 270 |
+
| <code>A chef is preparing a meal</code> | <code>Some food is being prepared by a chef</code> |
|
| 271 |
+
| <code>The presentation is being watched by a classroom of students</code> | <code>A classroom is full of students</code> |
|
| 272 |
+
| <code>Garden River , located north of Garden River Airport , Alberta , Canada .</code> | <code>Garden River , , is located north of Garden River Airport , Alberta , Canada .</code> |
|
| 273 |
+
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
|
| 274 |
```json
|
| 275 |
{
|
| 276 |
"scale": 20.0,
|
| 277 |
+
"similarity_fct": "cos_sim",
|
| 278 |
+
"gather_across_devices": false
|
| 279 |
}
|
| 280 |
```
|
| 281 |
|
|
|
|
| 284 |
#### LangCache Sentence Pairs (all)
|
| 285 |
|
| 286 |
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
|
| 287 |
+
* Size: 26,850 evaluation samples
|
| 288 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
| 289 |
* Approximate statistics based on the first 1000 samples:
|
| 290 |
+
| | sentence1 | sentence2 |
|
| 291 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 292 |
+
| type | string | string |
|
| 293 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 16.76 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.58 tokens</li><li>max: 44 tokens</li></ul> |
|
| 294 |
* Samples:
|
| 295 |
+
| sentence1 | sentence2 |
|
| 296 |
+
|:---------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
|
| 297 |
+
| <code>A chef is preparing a meal</code> | <code>Some food is being prepared by a chef</code> |
|
| 298 |
+
| <code>The presentation is being watched by a classroom of students</code> | <code>A classroom is full of students</code> |
|
| 299 |
+
| <code>Garden River , located north of Garden River Airport , Alberta , Canada .</code> | <code>Garden River , , is located north of Garden River Airport , Alberta , Canada .</code> |
|
| 300 |
+
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
|
| 301 |
```json
|
| 302 |
{
|
| 303 |
"scale": 20.0,
|
| 304 |
+
"similarity_fct": "cos_sim",
|
| 305 |
+
"gather_across_devices": false
|
| 306 |
}
|
| 307 |
```
|
| 308 |
|
| 309 |
### Training Logs
|
| 310 |
| Epoch | Step | val_cosine_ap | test_cosine_ap |
|
| 311 |
|:-----:|:----:|:-------------:|:--------------:|
|
| 312 |
+
| -1 | -1 | 1.0000 | 1.0 |
|
| 313 |
|
| 314 |
|
| 315 |
### Framework Versions
|
|
|
|
| 338 |
}
|
| 339 |
```
|
| 340 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
<!--
|
| 342 |
## Glossary
|
| 343 |
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 298041696
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95d02211c4cca89113f9f3e93ed91f5176bf50170faa2cb835f7bfea15bb9dd2
|
| 3 |
size 298041696
|